
December 1988 Report No. STAN-CS-88-1242

Also Numbered KSL-88-14

Thesis

LflN

,* < I

Apprenticeship Learning Techniques
for

Knowledge Based Systems

DTIC
l 1-ECTE by
~JUL 3 019903

0 U David Chester Wilkins

Department of Computer Science

Stanford University

Stanford, California 94305

fo-r -PN -i .release(

tor(?eleo"e(

APPRENTICESHIP LEARNING TECHNIQUES

FOR

KNOWLEDGE BASED SYSTEMS

by

David Chester Wilkins

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
1987

Doctoral Committee:

Professor Bruce G. Buchanan, Co-Chair
Stanford University

Professor John H. Holland, Co-Chair
Assistant Professor Paul D. Scott, Co-Chair
Professor Emeritus Arthur W. Burks
Assistant Professor John E. Laird
Professor Robert K. Lindsay

David Chester Wilkins 1987
All Rights Reserved

BIBLIOGRAPHIC OAT. 1. Report No. 2. 3. Recipient's Accession No.
SHEET
A. Tile and Subtitle 5. Report Date

Apprenticeship Learning Techniques for December, 1988
Knowledge Based Systems 6.

7. Author(s) S. Performing Organization Rept.

David C. Wilkins No.

9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

Department of Computer Science
Stanford University 1i. Contract/Grant No.

"4 Stanford, CA 94305

12. Sponsoring Organization Name and Address 13. Type of Report & Period

National Science Foundation National Institute Health Covered

Washington, D.C. 20550 Bethesda, MD 20892
Office of Naval Research DARPA 14.
Arlington, VA 22202 'Washington, DC 20550
15. Supplementary Notes

16. Abstracts

This thesis describes apprenticeship learning techniques for automation of the transfer of expertise. The major
accomplishment in this thesis is showing how an explicit representation of the strategy knowledge to solve
a general problem class, such as diagnosis, can provide a basis for learning the knowledge that is specific
to a particular domain, such as medicine. The Odysseus explanation-based learning program constructs
explanations of problem-solving actions in the domain of medical diagnosis. If no explanation is found, the
incomplete domain theory (i.e., the medical knowledge base) is extended via the use of underlying domain
theories and empirical methods so as to allow construction of an explanation. The Odysseus learning program
provides the first demonstration of using the same technique to transfer of expertise to and from an expert
system knowledge base. When watching an expert, it improves a knowledge base for the pre-existing Heracles
expert system shell. When watching a student apprentice, it models the student against the knowledge base

and thereby identifies bugs and gaps in the student's fledgling expertise.
Another major focus of this thesis is limitations of apprenticeship learning. It is shown that extant tech-

niques for reasoning under uncertainty for expert systems lead to a sociopathic knowledge base, wherein a
subset of the knowledge base can give better performance than the original knowledge base; incremental learn-
ing techniques are inappropriate when a knowledge base is sociopathic. Also, the synthetic agent method is
presented; it provides a means of determining a performance upper bound for apprenticeship learning systems.

17. Key Words

Artificial Intelligence, Knowledge Based Systems, Expert Systems, Machine Learning, Apprenticeship Learn-
ing, Explanation Based Learning, Incomplete Domain Theory, Sociopathic Knowledge Base, Medical Diagnosis,

* Intelligent Tutoring, Cognitive Modeling.

17c. COSATI Field/Group

18. Availability Statement 19. Security Class (This 21. No. ot Pages
Report)

unlimted UNC LASSIF TED
unlimited 20. Security CLass (This 22. Price

Page
UNCLASSIFIED

IrOMM M T I s- 311 110"?701 USCO1A-1OC 40329-P7

ABSTRACT

APPRENTICESHIP LEARNING TECHNIQUES

FOR KNOWLEDGE BASED SYSTEMS

by

David Chester Wilkins

December, 1987

The significance of machine learning for the future use of computers is very great.

Autonomous computer systems of the future will need far more knowledge than humans
can explicitly transfer; this requires that computers learn independently. An important

research goal for machine learning is to identify techniques that will allow intelligent
knowledge-based systems to learn automatically the large amounts of domain-specific
knowledge that are necessary for achieving expert-level problem-solving performance.

This thesis describes apprenticeship learning techniques for automation of the trans-

fer of expertise. The major accomplishment in this thesis is showing how an explicit rep-
resentation of the strategy knowledge to solve a general problem class, such as diagnosis,

can provide a basis for learning the knowledge that is specific to a particular domain,
such as medicine. The Odysseus explanation-based learning program is presfuted, which
constructs explanations of human problem-solving actions in the domain of medical di-
agnosis. If no explanation can be constructed, Odysseus extends the incomplete domain

theory (i.e., the medical knowledge base) via the use of underlying domain theories and
empirical methods so as to allow construction of an explanation. Odysseus provides the
first demonstration of using the same technique to transfer of expertise to and from an

expert system knowledge base. When watching an expert, it improves a knowledge base

for the pre-existing Heracles expert system shell. When watching a student apprentice,
it models the student against the knowledge base and thereby identifies bugs and gaps in

the student's fledgling expertise.
Another major focus of this thesis is limitations of apprenticeship learning. It is

shown that extant techniques for reasoning under uncertainty for expert systems lead to a
sociopathic knowledge base, wherein a subset of the knowledge base can give better perfor-

mance than the original knowledge base; incremental learning techniques are inappropriate -

when a knowledge base is sociopathic. Also, the syntheti agent method is presented; it
provides a means of determining a performance upper bound for apprenticeship learning

systems.

to Marianne

ii

ACKNOWLEDGMENTS

My thesis haf been heavily influenced by all my committee members. I am grateful

to Bruce Buchanan for instilling an understanding of how one does research and what

constitutes good research. The freedom Bruce provided me to pursue my own ideas has

been priceless to my development. Bill Clancey has played an equally significant role in

this work. My ODYSSEUS learning program builds upon Bill's NEOMYCIN expert system,

a program that mirrors Bill's deep understanding of the important issues and directions

in expert systems research. Paul Scott's knack for totally dissecting my techniques and

argunents has always astonished me, and has greatly improved this thesis. The Logic of

Computers group of Art Burks and John Holland was an inspiration to me many years

before I started graduate school. Art and John are my models for good scientists, and doing

work that represents achievement by their standards is my lifetime goal. Bob Lindsay's

emphasis on taking a scientific approach and formulating testable hypotheses led me to

abandon several earlier thesis proposals, and I am very grateful for the perspective he

provided. John Laird kindly agreed to join my committee on short notice and provided

valuable comments on my thesis draft.

During the evolution of this thesis, I received sage advice periodically from my

models of lucid thinking: Tom Dietterich, Tom Mitchell, Paul Rosenbloom, and Kurt

VanLehn. Their observations always deepened my understanding and led to improved

presentation of my methods and results. I am also indebted to Pat Langley, John McDer-

iii

mott, Ryszard Michalski, Roy Rada and Derek Sleeman for thesis-related discussions that

were of significant help. My early thesis formulation was greatly aided by discussions with

Saul Amarel, Avron Barr and Jim Bennett. Avron once considered doing a dissertation

on learning within NEOMYCIN, and his advice on the challenges of such an endeavor was

helpful.

I appreciate the comradeship and useful advice of my GRAIL Learning Group co-

horts, especially Tom Dietterich, Andy Golding, Benjamin Grosof, Haym Hirsh, Peter

Karp, Paul Rosenbloom, Devika Subramanian, and Stuart Russell. They made exploring

the terrain of machine learning a lot of fun. In addition, Devika, Haym, and Marianne

Winslett critiqued many drafts of many papers that have become part of this thesis; their

suggestions significantly improved the presentation and content.

Many members of the GUIDON Tutoring Group contributed code that was di-

rectly or indirectly used by my ODYSSEUS learning program, and I would like to thank

Steve Barnhouse, Conrad Bock, Diane Hasling, David Leserman, Arif Merchant, Steven

Oliphant, Mark Richer, and Naomi Rodolitz.

For discussions on complexity analysis and uncertainty reasoning I am grateful to

Ramsey Haddad, David Heckerman, Eric Horovitz, Curt Langlotz, Peter Rathmann, and

Marianne Winslett. Jim Koehler and David Shapiro provided helpful statistical advice.

Many physicians have played an instrumental role in this research. Curt Kapsner

and John Sotos taught me most of what I know about medicine and provided frequent

medical advice. John and Edward Herskovits helped me create a case library for the

NEOMYCIN domain from medical records at the Stanford University Hospital, thereby

allowing evaluation of my ODYSSEUS learning program. Ted Shortliffe made many helpful

suggestions and constructed a disease hierarchy for the MYCIN domain that was used in

experiments to measure improvement caused by r.duction of sociopathic interactions.

iv

I am grateful to Mark Frisse for suggesting the term 'sociopathic'. John Sotos, Larry

Fagan, Mark Musen, Randy Miller, and Roy Rada provided problem-solving protocols

that were used in validation experiments. In addition, a number of medical students

provided problem-solving protocols, and I would like to especially thank Russ Altman.

*At Xerox PARC, the Tuesday paper-lunch group provided a sharp and provocative

counterpoint to the conception of knowledge based systems that I absorbed at Stanford's

Knowledge Systems Lab. I would like to thank John Seely Brown, Jim Greeno, Kurt

VanLehn, and Jeff Shrager for the interest they took in my work. Most of the programming

of ODYSSEUS was done at PARC's Intelligent Systems Lab.

Doubtless the writing of this thesis would have cost me my sanity if it were not

for the members of Saint Ann's Choir. I would especially like to thank Bill Mahrt, Eu-

nice Schroeder, and Ellen Pint. They took care of my spiritual health, while the SCRA

Sunday morning tennis group, with Bruce Buchanan, Bob Engelmore, and Curt Langlotz,

preserved my physical heath. My parents, brother, and sisters have seen much less of

me during the last few years of writing this thesis. I would like to thank Joseph, Clare,

Patricia, Timothy, and Mary Beth, who are all very special to me, for their understanding

and encouragement.

Marianne Winslett provided constant emotional and intellectual support in the

writing of this dissertation, and helped weave frequent visits to the Pacific Ocean, the

Sierras, and San Francisco into its tapestry. It is to her that this thesis is dedicated.

While the techniques developed in my thesis originated with me, the research di-

rectly builds on past work at Stanford's Knowledge Systems Lab (formerly, the Heuristic

Programming Project), and thereby owes an enormous intellectual debt to the work of

Ed Feigenbaum, Bruce Buchanan, Ted Shortliffe, Randy Davis, Bill Clancey, and Mike

Genesereth. Appendix D traces the genealogy of the ODYSSEUS learning program that is

v

the centerpiece of this thesis.

The computer time provided by SUMEX-AIM is appreciated, as well as the efforts

of Tom Rindfleisch, Christopher Schnidt, and Bill Yeager to provide a superb computing

environment. To obtain the full aesthetic benefits of TEX required frequent visits to the

mind of its creator, Donald Knuth, and this introduced into t iw writing a way of thinkinlg

that is quite alien to artificial intelligence.

This work was principally supported by the National Science Foundation under

grant MCS-83-12148 and the Office of Naval Research under contracts N00014-79C-0302

and N00014-88K-0124. I am appreciative of Susan Chipman's interest in the cognitive

modeling aspects of my work. Support was also received from the Advanced Research

Projects Agency under contract N00039-83-C-0136, the National Institute of Health under

grant NIH RR-00785-11, and the National Aeronautics and Space Administration under

grant NAG-5-261.

vi

TABLE OF CONTENTS

DEDICATION..ii

ACKNOWLEDGMENTS.....................................iii

LIST OF FIGURES... x

LIST OF TABLES..xi

LIST OF APPENDICES..................................... xi

CHAPTER

1 INTRODUCTION......................................1

1.1 The Problem and]Results................................2
1.2 Odysseus Apprenticeship Learning Program.................. 5

1.2.1 The Performance Model of Learning...................5
1.2.2 Odysseus' Learning Methodology..................... 8

1.3 Example of Learning by Watching......................... 11
1.3.1 Stage 1: Detecting Deficiencies in a Knowledge Base........ 11
1.3.2 Stage 2: Suggesting Repairs to a Knowvledge Base 12
1.3.3 Stage 3: Evaluating Repairs to a Knowledge Base 13

1.4 Reader's Guide. 14

2 BACKGROUND. 15

2.1 Problem-Solving Architecture of Heracles. 15
2.1.1 Obje-ct-Level Representation. 16
2.1.2 '-zyntax of Object-Level Knowledge 16
2.1.3 Specification of Object-Level Knowledge. 18
2.1.4 Semantics of Object-Level Knowledge 20
2.1.5 Meta-Level Representation. 20

2.2 Related Research. 21
2.2.1 Knowledge Acquisition 21
2.2.2 Machine Learning 24
2.2.3 Student Modeling 26
2.2.4 Neomycin-based MIodcling Programs. 28

vii

2.2.5 Plan Recognition and Language Understanding 30
2.2.6 Automatic Programming 3!

3 DETECTING DEFICIENCIES IN A KNOWLEDGE BASE . . . 32

3.1 Methods of Detecting Deficiencies 3
3.1.1 Problem Solution as External Standard 33
3.1.2 Problem Solution Steps as Externai Standard ..

3.1.3 Environmental Feedback as External Standard 3 5
3.1.4 Oracle as External Standard 36
3.1.5 Efficiency as Internal Standard 36
3.1.6 Correctnes- as Internal Standard 37

3.2 Detecting Deficiencies When Learning by Watching 37

3.2.'- Finding Explanations by Reverse Interpreta-tion

3.2.2 The Strategy Space of Heracles 40

3.3 Detecting Deficiencies When Learning from Experience 42

4 SUGGESTING REPAIRS TO A KNOWLEDGE BASE 45

4.1 Techniques for Suggesting Repairs 45

4.1.1 Mutation and Crossover 46
4.1.2 Weight Adjustment 47
4.1.3 Rule Generalization 47
4.1.4 Plan Generalization 47
4.1.5 Plan Completion 47
4.1.6 Analogy 48

4.1.7 Oracle 48
4.2 Suggesting Repairs When Learning by Watching 48

4.3 Suggesting Repairs When Learning From Experience 49

4.4 Example of Suggesting Repairs 50

5 EVALUATING REPAIRS TO A KNOWLEDGE BASE 55

5.1 Spectrum of Techniques for Evaluating Repairs 56

5.2 The Confirmation Theory 56
5.2.1 Knowledge- vs. Performance-oriented Validation 57
5.2.2 Examples of Using a Confirmation Theory 59
5.2.3 Confirmation Theory for Factual Knowledge 60

5.2.4 Confirmation Theory for Rule Knowledge 63
5.3 The Underlying Domain Theory 66

5.3.1 Odysseus' Induction System 66

5.3.2 Related Research 67
5.4 Example of Evaluating Repairs 67

viii

6 INHERENT LIMITS OF LEARNING 70

6.1 Sociopathic Knowledge Bases 71

6.1.1 Reasoning 'Tnder Uncertainty 72

6.1.2 Inexact Reasoning and Rule Interactions 74

6.2 Debugging Sociopathic Knowledge Bases 77

6.2.1 Types of Rule Interactions 77

6.2.2 Traditional Methods of Debugging a Rule Set 78

4b 6.3 Minimizing Sociopathic Interactions 79
6.3.1 Bipartite Graph Minimization Formulation 80

6.3.2 Sociopathic Reduction Algorithm 82

6.3.3 Example of Sociopathic Reduction 85

6.3.4 Experimental Results 87

6.4 Sunmiary 88

7 UPPER LIMITS OF LEARNING 89

7.1 Evaluation and the Synthetic Agent Method 91

7.2 Synthetic Agent Method of Evaluation 92

7.2.1 The Synthetic Agent Method 95
7.2.2 Discussion of Synthetic Agent Method 97
7.2.3 Categories of Errors 98

7.3 Summarv 99

8 LOWER LIMITS OF LEARNING 101

8.1 Knowledge Acquisition Results 103

8.2 Student Modeling Results 106
8.3 Comparing Apprentice Scenarios 108

9 CONCLUSIONS 109

9.1 Contributions 109
9.1.1 Techniques for Apprenticeship Learning 109
9.1.2 Fundamental Limits of Learning 111
9.1.3 Symmetry of Learning and Teaching 112

9.2 Main Limitations of Approach 112
9.2.1 Underconstrained Interpretations of Actions 113

9.3 Further Work 116

APPENDICES 118

BIBLIOGRAPHY 127

INDEX 136

ix

LIST OF FIGURES

Figure

1.1 The learning by watching apprenticeship scenario 3

1.2 The three principal apprenticeship scenarios 4

1.3 The performance model of learning 6

1.4 Odysseus' method for learning by watching 10

1.5 An example of what the Odysseus apprentice learner sees 12

2.1 Problem-solving architecture of Heracles 17

3.1 Odysseus' method of detecting discrepancies 38

3.2 Degrees of strategy differences 41

3.3 The learning from experience apprenticeship scenario 42

3.4 Odysseus' method for learning from experience 43

5.1 A use-independent knowledge base 57

5.2 Types of knowledge that improve performance 58

6.1 Bipartite graph formulation of sociopathic interactions 83

6.2 Example of bipartite graph formulation for one hypothesis 86

7.1 The synthetic agent method for learning by watching 93

7.2 Different categories of knowledge 94

D.1 Genealogy of the Odysseus apprenticeship learning program 124

x

LIST OF TABLES

Table

3.1 Performance standards for detecting deficiencies used by learning programs 33

4.1 Methods of suggesting repairs used by learning programs 46

5.1 Methods of evaluating repairs used by learning programs 55

8.1 Performance of Neomycin before learning 104

8.2 Performance of Neomycin after learning 105

8.3 Performance improvement from learning by watching 106

xi

LIST OF APPENDICES

Appendix

A ODYSSEUS PROGRAM....................................119g

B HERACLES PROGRAM.................................... 121

C CALCULATINGk .. 123

D, GLOSSARY... 124

xii

CHAPTER 1

INTRODUCTION

The significance of machine learning for the future use of computers is very great.

Autonomous computer systems of the future will need far more knowledge than humans

can explicitly transfer; this requires that computers learn independently. An impor-

tant research goal for machine learning is to identify techniques that will allow intelli-

gent knowledge-based systems to automatically learn the large amount of domain-specific

knowledge that is necessary to achieve expert-level problem-solving performance.

Apprenticeship is the most effective means for human problem solvers to learn or

teach domain-specific problem-solving knowledge in knowledge-intensive domains. This

observation provides motivation to give apprenticeship learning abilities to knowledge-

based expert systems. The paradigmatic example of an apprenticeship period is medical

training. In medicine, high-level performance is obtained by spending two or three years

acquiring 'first-principles' textbook knowledge (beginning-gane knowledge acquisition)

and then spending five to eight years in an apprenticeship role, called a clerkship, an

internship, and a residency (end-game knowledge acquisition). An apprenticeship period

succeeds in creating hmnan experts in some knowledge-intensive professions, and hence it

makes sense to investigate its efficacy in creating artificial experts.

2

1.1 The Problem and Results

This dissertation describes apprenticeship learning techniques for automation of

the transfer of expertise to and from an expert system knowledge base, and describes

fundamental limitations of an apprenticeship learning approach. By definition, apprentice

learning systems improve a performance program in the course of normal problem solv-

ing and derive their power from the use of an underlying domain theory (Mitchell et al.,

1985). Our experience in implementing an apprenticeship learning program in the domain

of diagnosing neurological problems has yielded four general results. First, a demonstra-

tion is provided of how an explicit representation of meta-level strategy knowledge for a

general problem class, such as diagnosis, can provide a basis for learning the object-level

knowledge that is specific to a particular domain, such as medical knowledge. Second,

we demonstrate the need for and use of a confirmation theory to mediate between the

object-level knowledge to be learned and the underlying domain theory. A confirmation

theory provides a decision procedure for judging potential repairs to the knowledge base,

and is required when deleterious interactions can occur between facts or rules of a 'use-

independent' knowledge base during problem solving. Third, it is shown that there are

inherent limits to learning for apprenticeship techniques, in particular, and incremental

learning techniques, in general, for a wide class of knowledge bases. In addition to inher-

ent learning limits, we present results concerning the calculation of an upper and lower

performance bound on an apprentice learning system. Lastly, we provide the first demon-

stration of using the same technique to transfer expertise both to and from the knowledge

base of an expert system. When watching an expert, the ODYSSEUS learning program

improves an expert system. When watching a student, the ODYSSEUS learning program

improves the student's fledgling expertise.

There are three principal apprenticeship learning scenarios used by human problem

3

Problem Situation

PS LP ES

Problem Learning Expert
Solver Program System

Differences Between
Problem-Solving Knowledge Structures Problem-Solving

Actions of PS and ES Actions

Figure 1.1: The learning by watching apprenticeship scenario. The
learning program models an expert system against an expert or student
problem solver in order to detect discrepancies between the knowledge of
the human and expert system. The learning program then uses the meta-
level strategy knowledge of the expert system to suggest object-level
differences in the knowledge structures. These suggestions are tested
using an underlying domain theory.

solvers in knowledge-intensive domains such as medicine and engineering: learning by

watching an expert solve problems, learning by watching a student solve problems, and

learning by watching oneself solve problems. In the first scenario, which is called learning

by watching an ezpert, a student apprentice observes the problem-solving actions of a

human expert. A learning opportunity occurs when the student cannot explain an observed

action. At this point, the problem-solving context often allows the student to conjecture

the knowledge discrepancy responsible for the explanation failure. The conjecture can be

evaluated by the use of an underlying theory of the domain or by asking the expert. In

this thesis, the 'student' in the scenario that was just described is an expert system to

be improved; the ODYSSEUS apprenticeship learning program allows the expert system

to perform the learning method used by the student apprentice. The major objective this

4

chapter is to provide a detailed introduction to this first learning by watching scenario,

where the student to be improved is an expert system.

'Learning by watching' apprenticeship scenarios.

1. Learning program watches an expert

solve problems and improves an expert system.

2. Learning program watches a student

solve problems and improves the student.

'Learning from experience' apprenticeship scenario.

3. Learning program watches an expert system

solve problems and improves the expert system.

Figure 1.2: The three apprenticeship scenarios that are investigated in
this thesis. The principal focus of this chapter and thesis is the first of
the three apprenticeship scenarios.

The second principal apprenticeship learning scenario is learning by watching a stu-

dent, and refers to the situation when a human expert watches and critiques the problem-

solving behavior of a student apprentice. In this thesis, the 'student' in the scenario that

was just described is a human student to be improved; the ODYSSEUS apprenticeship

learning program allows the expert system to perform the learning method used by the

expert. Figure 1.1 illustrates the experimental set-up used to investigate the two learning

by watching scenarios that have been described. ODYSSEUS uses the exact same mech-

anisms to automate the transfer of expertise in both situations, so the term learning by

watching will often be used to refer to both of them.

The third apprenticeship learning scenario involves watching ones own problem

solving, and this scenario is referred to as learning from ezperience. A student apprentice

5

learns in the course of solving problems and monitoring his or her own problem-solving

failures. In the experimental setup used to investigate this scenario, an expert system

assumes the role of the student doing problem solving. The learning program detects

when the meta-level strategy knowledge of the expert system fails to achieve problem-

solving goals. The ODYSSEUS learning program then suggests and evaluates repairs to

the object-level knowledge base that would prevent the meta-level problem-solving failures.

The ODYSSEUS learning apprentice is designed to improve any knowledge base

crafted for an expert system shell called HERACLES.' HERACLES uses a problem-solving

method called heuristic classification, which is the process of selecting a solution out of a

pre-enumerated solution set, using heuristic techniques (Clancey, 1985). In a knowledge

acquisition setting, ODYSSEUS improves the object-level knowledge of an expert system in

the process of watching a human expert or the expert system solve problems, and thereby

functions as a knowledge acquisition program for HERACLES. In an intelligent tutoring

setting, ODYSSEUS improves the object-level knowledge of a student in the process of

watching and critiquing a student who is solving problems, and thereby functions as a

student modeling program for the GUIDON2 intelligent tutoring system, which is built

over HERACLES.

1.2 Odysseus Apprenticeship Learning Program

1.2.1 The Performance Model of Learning

Having defined the apprenticeship situation, a careful look will now be given to the

HERACLES is described at length in Section 2.1 and Appendix B. The best single reference
is (Clancey and Bock, 1986). HERACLES was created by removing the medical knowledge from
NEOMYCIN (Clancey, 1984). In thiq thesis, there ik no meaningful distinction between the use
of the terms HERACLES and NEOMYCIN, because our experiments used HERACLES with
the NEOMYCIN medical knowledge base.

6

tasks that are faced by an apprenticeship learner within the context of the performance

learning model (Buchanan et al., 1978) shown in Figure 1.3, and then outline the solution

approach presented in this thesis. The major functional components of the performance

learning model are a performance element, a training instances generator, an intelligent

editor and a learning critic. Each of these will be described in turn.

PERFORMANCE ELEMENT LEARNING CRITIC
- Heracles-based expert system - detect deficiencies in KB

or student - suggest repairs to KB
- evaluate repairs to KB

BLACKBOARD

INTELLIGENT EDITOR TRAINING INSTANCES
- modifies object-level knowledge - problem-solving behavior

of human or expert system

Figure 1.3: The performance model of learning provides a good frame-
work for describing learning programs. The components of our appren-
ticeship learning situation are shown within this model.

The term performance element refers to the system that the learning program

improves. In a knowledge acquisition setting, the performance element is an expert system

written in the HERACLES shell. In a intelligent tutoring system setting, the performance

element is a student. More generally, the techniques described in this thesis are applicable

7

to any knowledge based system where domain-specific knowledge is described at an object-

level and strategy knowledge of the problem-solving method is represented explicitly at a

meta-level.

The training instances presented to the learning system consist of the normal ob-

servable problem-solving behavior of an expert or expert system, when the performance

element to be improved is the expert system. In this thesis, training instances will also

be referred to as data requests or actions. The behavior of a student is observed when the

performance element to be improved is a student. In our experiments, the human problem

solver is given a chief complaint of a patient, and then proceeds to make a series of data

requests to gather information that allows the patient's illness to be determined. An ex-

ample is shown in Figure 1.5. The problem solver answers any clarification requests made

by the learning system critic, relating to goal information. For example, the problem-

solver's goal might be to confirm a particular hypothesis or to discriminate between two

likely hypotheses.

The heart of the learning system is the learning critic, which is responsible for global

and local credit assignment. An apprentice learner directly confronts these two problems,

which are two of the hardest and most central problems in machine learning (Dietterich

and Buchanan, 1981). The global credit assignment problem is to determine when the

observable behavior of an human problem solver suggests a knowledge base deficiency.

In an apprenticeship learning setting, the function of the global critic is to answer a

yes or no question: does an observed action of the problem solver suggest a knowledge

base deficiency in the expert system? Since a 'yes' answer relates a knowledge base

deficiency to a particular action of the specialist, the global critic significantly contributes

to localizing the knowledge base deficiency. The local credit assignment problem is to

isolate the deficiency, which is very difficult in a complex knowledge-based program.

8

In this thesis, the global and local credit assignment problems are divided into

three distinct problems, and each of them is attacked separately. The three problems

are to detect discrepancies in the knowledge base, to suggest knowledge base repairs, and

to evaluate suggested knowledge base repairs. Any learning requires solving these three

problems. In most existing knowledge acquisition programs, these three functions are

not performed automatically; a cooperating human expert assists the learnitig program in

solving these problems. The research described herein provides a method of automating

all three of these tasks.

The intelligent editor can reason about the performance element's knowledge struc-

tures. In our case, this means it knows how to modify the HERACLES domain-specific

parameter and rule files, thereby correcting bugs or adding or deleting new object-level

knowledge.

1.2.2 Odysseus' Learning Methodology

The solution approach that ODYSSEUS takes to a learning by watching situation

is shown in Figure 1.4. The purpose of the remainder of this section provides an informal

introduction to the ODYSSEUS method. In Chapters 2-5, the solution approach will be

explained in a more technical fashion.

The top third of the figure illustrates how ODYSSEUS accomplishes the detection of

deficiencies. Each time an human problem solver performs a problem-solving action, the

action is input to ODYSSEUS. The ODYSSEUS explanation generator produces explana-

tions of the human's action. These explanations are sequences of strategy metarules that

connect the observed action to a high-level problem-solving goal. They can be viewed

as PROLOG-style proof trees; the leaves of the proof trees are instantiated using the

object-level knowledge base. When no proof tree can be successfully instantiated, an

9

explanation failure occurs. The output of the program that detects deficiencies is the

unexplained action of the human expert and a list of the active high-level goals to which

ODYSSEUS believes the action most likely relates. This is passed to the next learning

stage of ODYSSEUS, which suggests repairs.

The ODYSSEUS subsystem that suggests repairs to the knowledge base relaxes the

constraints on the construction of explanatory proof trees, beginning with a single fault

assumption. That is, it constructs PROLOG-type proof trees that succeed in connecting

the unexplained action to a high-level goal when a single clause in on,- of the premises of

metarules forming the explanation chain is allowed to fail. Examples of two such clauses

are subsumes($parameterl Sparameter2) and evidence.for($parml Shypothesisl Srulel Scfl).

It then conjectures which knowledge is missing from the knowledge base by generating all

instantiations of the failed -lause that are consistent with the problem-solving context.

The problem-solving context reduces the allowable values of the variables in the clause.

Each time a suggestion is produced, it is passed to the third stage of ODYSSEUS that

evaluates candidate repairs.

The subsystem that evaluates repairs determines the worth of the repair through

the use of a confirmation theory. A confirmation theory is a decision procedure that is

given an arbitrary instantiation of a clause and determines if it should be added to the

knowledge base. The ODYSSEUS confirmation theory includes a set of constraints for

each type of clause, which must be met if the clause is to be added to the knowledge. In

trying to satisfy these constraints, the confirmation theory uses the existing knowledge

base and the underlying domain theory for the knowledge base. When a candidate repair

is accepted by the confirmation theory, the clause is added to the object-level knowledge

base.

The solution approach used by ODYSSEUS in the third apprenticeship learning sce-

10

Observe
Human Action

Generate / Meta-Level Strategy
DttKExplanations KN

Detect KB ____-____

Deficiency

Yes Explanation Object-Level

j Found KN

4No
Conjecture KN

Suggesti That Completes
KB Repair an Explanation

No New RN Confirmation

Justified Theory

Evaluate <
KB Repair Yes

Modify Underlying

Object-Level KN Domain Theory

Figure 1.4: Overview of ODYSSEUS' method in a learning by watching
apprentice situation. This thesis develops techniques that permit au-
tomation of each of the three stages of learning shown on the left edge
of the figure. An explanation consists of a sequence of metarules that
connect a problem-solving action to a high-level goal.

nario, called learning from experience, will now be described. In this scenario, the learning

program monitors the normal problem solving of a HERACLES-based expert system. Once

again the learning method has three stages. The first stage detects possible deficiencies by

11

monitoiing failures of the premises of strategy metarules in the expert system shell, since

all knowledge base gaps cause these. The exact same techniques used for the last two

stages of learning by watching are also applicable to learning from experience. Indeed, the

second stage is easier in learning from experience, since the input includes the particular

clause and the particular metarule that failed. In learning by watching these miust be

determined from more general information.

1.3 Example of Learning by Watching

An example in the domiain of medical diagnosis will illu-1 z;tte how O)YSSEUS

iriproves an expert systen usinrg apprenticeship techniques in a learning by watching

an expert scenario. This exaimple is meant to convey an intuitive understanding of our

olition approach. This same example is treated in greater depth in Chapters 3-5. Each

of these three chapters expounds on , ,:-iL three stages of apprenticeship learning.

A typical traiv'ng instance that is input to the learning program is the problen-

solving behavior of an expert .ti, ch as shown in Figure 1.5. The expert begins

making data requests and concludes with a final diagnosis. ODYSSEUS has no explanation

for why this data request was asked and thus a discrepancy has been detected.

1.3.1 Stage 1: Detecting Deficiencies in a Knowledge Base

The first of the three stages of apprent iceship learning is (letection of knowledge base

deficiencies. For each action of the expert, ODYSSEUS generates one or more explanations

of the expert's behavior. These are referred to as Line of Reasoning Explanations (LOREs).

They consist of a sequence of strategic ietarules that counect an observed action of

the problem solver to a high-level strategic goal, in which free variables in the strategic

nietarules are instantiated with object-level knowledge. A learning opportunity occurs

12

Patient's Complaint and Volunteered Information:

1. Alice Ecila, a 41 year old black female.

2. Chief complaint is a headache.

Physician's Data Requests:

3. Headache duration? focus=tension headache. 7 days.

4. Headache episodic? focus=tension headache. No.

5. Headache severity? focus=tension headache. 4 (Scale 0-4).

6. Visual problems? focus =subarachnoid hemorrhage (sah). Yes.

7. Double vision? focus=sah, tumor. Yes.

8. Temperature? focus=infectious process. 98.7 Fahrenheit.

14. Visual sensitivity to light? focus=migraine, viral meningitis. Yes.

15. Sickdegree? focus=viral meningitis, infection, sah, tumor. 1 (Scale 0-4).

16. Stiff Neck? focus=meningitis. No.

17. Nausea? focus=migraine. Yes.

18. Vomiting? focus=migraine. Yes.

19. Red and painful eye? focus=cluster headache. No.

Physician's Final Diagnosis:

25. Migraine Headache.

Figure 1.5: An example of what the ODYSSEUS apprentice learner sees.
The data requests in this problem-solving protocol were made by John
Sotos, M.D. The answers to his data requests were obtained from an
actual patient file from the Stanford University Hospital, extracted by
Edward Herskovits, M.D.

when no LORE can be found for an observed action. In the current example, no explanation

can be found for one of the expert's actions, namely asking the question visual problems.

The program announces this fact.

1.3.2 Stage 2: Suggesting Repairs to a Knowledge Base

The second stage of apprenticeship learning is to suggest repairs to the knowledge

13

base. ODYSSEUS relaxes the constraints on the generation of LOREs. LOREs are con-

structed that contain metarules with one or more failed metarule clauses; initially, only a

single failed clause is allowed. In this example, one of the LOREs that is constructed con-

tains the failed metarule premise clause evidence.for($finding $hypothesis Srule.name $cf).

To suggest repairs, ODYSSEUS finds all sets of allowable bindings for the variables in this

clause. These bindings are constrained by the bindings of the variables in other clauses

of the metarules, but they are not constrained by which evidence.for tuples are actually

in the knowledge base. An example of a metarule clause suggested by this technique is

evidence.for(photophobia acute.meningitis $rulel $cf). The candidate suggests that if a rule

was added to the knowledge base that mentions the finding photophobia in the premise

and provides evidence for acute meningitis in its conclusion, then a LORE explanation

could be completed that explained the data request visual problems.

1.3.3 Stage 3: Evaluating Repairs to a Knowledge Base

The third step of apprenticeship learning is to evaluate the candidate repai-s using

a confirmation theory. Our confirmation theory consists of a decision procedure for each

relation, such as evidence.for. Each clause of a metarule provides an example of one or more

relations. Candidate repairs are tested to see whether they satisfy the decision procedure

for their relation. In reaching a decision, the decision procedure uses underlying theories

of the domain and the existing object-level knowledge base. The underlying theory of the

domain used by ODYSSEUS includes a LORE explanation generator based on an explicit

representation of strategy knowledge for heuristic classification, and an induction system

that uses a library of correctly solved cases and a set of rule 'goodness' measures that

determine the quality of an arbitrary rule presented to it. In the example that has been

developed, the induction system generates and evaluates rules that have photophobia in

14

their premise and acute meningitis in their conclusion. A rule is found that passes the

rule 'goodness' measures, and is automatically added to the object-level knowledge base.

This completes our informal example of the method used by ODYSSEUS in a learn-

ing by watching apprenticeship. This same example is developed in greater depth in

Chapters 3-5.

1.4 Reader's Guide

This chapter provided an overview of the entire thesis. The ODYSSEUS learning

method was described and an example of learning by watching was presented. The next

chapter provides background information. It describes the method of knowledge represen-

tation and control used by the performance element to be improved, and surveys the past

research that relates to the apprenticeship learning problem.

A suite of three chapters then describes the three stages of apprenticeship learning.

These are followed by a second suite of three chapters, describing the inherent, upper, and

lower limits of apprenticeship learning, respectively. Finally, we summarize.

CHAPTER 2

BACKGROUND

The problem solving architecture of the performance element and the syntax and

semantics of the knowledge base have a major impact on a learning method. This chapter

describes the method of knowledge representation and control used by the performance

element. This chapter also provides an overview of past research that relates to the

apprenticeship learning techniques that are developed in this thesis.

2.1 Problem-Solving Architecture of Heracles

The implementation of the ODYSSEUS learning apprentice program works in con-

junction with the HERACLES expert system shell. Understanding the architecture of

HERACLES is important for understanding the learning techniques used by ODYSSEUS.

The learning techniques developed in this thesis should be generally applicable to any

performance element that has an explicit meta-level representation of strategy knowledge.

HERACLES solves problems using the heuristic classification method (Clancey,

1985). This method selects a member of a pre-enumerated solution set using heuristic

methods. EMYCIN is another example of an expert system shell that solves problems us-

ing the heuristic classification method (Buchanan and Shortliffe, 1984). HERACLES was

15

16

created by removing the medical knowledge from NEOMYCIN (Clancey, 1984). HERA-

CLES is to NEOMYCIN as EMYCIN is to MYCIN (Buchanan and Shortliffe, 1984). The

relationship between these programs is illustrated in Appendix D. The reader desiring

details of HERACLES beyond what is provided in this chapter is is referred to Appendix

C.

Problem-solving knowledge in HERACLES is organized into three distinct layers,

as illustrated in Figure 2.1. The bottom object-level of organization includes all domain-

specific knowledge of the expert domain, such as medical or engineering knowledge. The

middle meta-level layer contains strategy knowledge for a class of problems, such as heuris-

tic classification or constraint propagation. Earlier shells such as EMYCIN did not have

the middle layer of strategy knowledge; rather, this knowledge was imbedded in the in-

terpreter (top level) and the domain rules (bottom level). The top layer of Heracles is

a task interpreter which interprets the strategy knowledge, which is represented as tasks

and metarules. The remainder of Section 2.1 describes these three layers in greater detail.

2.1.1 Object-Level Representation

Two characteristics of the object-level representation facilitate learning: distinc-

tions are made between the different types of domain knowledge in the knowledge base,

and all rule and frame knowledge at the object-level is uniformly encoded as a database

of ground literals.

2.1.2 Syntax of Object-Level Knowledge

Object-level knowledge has an extensional and intensional component. The exten-

sional data base (EDB) is created by instantiating a set of predefined relations R, specific

to the problem domain. The EDB has a relation schema, a list of the attributes of each

relation (e.g., R(A, B, C)). The relation schema of NEOMYCIN is shown in Appendix C.

17

Task
Interpreter

Meta-level Strategy Knowledge
(Tasks and Metarules)

Object-Level --- Database of
Domain Rules Ground Literals

Figure 2.1: HERACLES problem solving architecture. The middle level
encodes strategy knowledge of a problem-solving method, such as di-
agnosis. The bottom level encodes domain-specific knowledge, such as
medical knowledge.

The permissible ranges of the values of the attributes of the schema are known. Following

the database literature, we shall refer to instantiated relations as relation instances, which

are sets of tuples. A tuple has the form R(ci,c 2,.. .,c,), where cl through c,, are in the

set of legal values for their respective attributes, and R is a relation name.

The relation schema for NEOMYCIN contains 120 different relations. Many differ-

ent types of knowledge are encoded, such as hierarchical, associational, heuristic, control,

definitional and causal knowledge. Even rule knowledge is represented in terms of re-

lations; a single rule is decomposed into tuples in many different relations. The actual

representation follows the MRS logic programming language (Russell, 1985) conventions

for encoding tuples. For example, an instantiation of the proposition suggests($parameter

$hypothesis) represents the fact that if a particular parameter is true then this suggests

18

that a particular hypothesis is true. An instantiation of the template askfirst($parameter

$flag-value) specifies whether the system should first ask the user for the value of a finding,

or derive the information from existing information.

The intensional data base (IDB) at the object-level consists of rules with a MYCIN-

like syntax. The premise and action of these rules initially each consist of a conjunction

of tuples. To make this knowledge more declarative, each rule is translated into a set of

tuples in the EDB as described in the following section.

2.1.3 Specification of Object-Level Knowledge

Domain-specific knowledge in HERACLES is initially specified by the user as MYCIN-

like rules and facts. This knowledge is then translated into the knowledge representation

constructs of the MRS logic progranmming language. For clarity, a hypothetical example

of this translation process will be shown. An original representation as objects and rules

is as follows.

headache.duration

parmtype soft.data

subsumed.by headache

askfirst T

rule160

premise (and (equal headache-chronicity acute)

(equal headache-onset abrupt)

(greater (value headache-severity) 3)

action (conclude sub-hemorrhage yes .6)

19

trigger.rule T

antecedent.rule T

This knowledge is translated by Heracles into MRS, reducing it to a database of

ground literals. For the current example, the result of this translation is:

parmtype(headache.duration soft.data)

subsumes(headache.duration headache)

askfirst(headache. duration)

evidence.for(headache.duration sub-hemorrhage rule160 .6)

evidence.for(headache.onset sub-hemorrhage rule160 .6)

evidence.for(headache.severity sub-hemorrhage rule160 .6)

antecedent(headache.duration rule160)

antecedent(headache.onset rule160)

antecedent(headache.severity rule160)

trigger.rule(rulel60, headache-severity)

antecedent.rule(rulel60)

This translation shows a few of the approximately 120 knowledge relations defined

in Ileracles, such as subsumes($parml Sparm2), evidence.for($parameter $hypothesis $rule

$cf), and trigger($rule). The evidence.for tuple means that $parameter contributes evi-

dence for $hypothesis in the rule named $rule and the certainty factor or strength of this

rule is $cf. A $' denotes a variable. If a rule has several parameters in the premise, an

evidence.for tuple is constructed for each of them. The goal of such a translation is to

reduce the domain-knowledge to a completely declarative representation. In the original

representation, knowledge is procedurally imbedded, for example the ordering of clauses

in the rules premise.

20

The EDB representation for a heuristic rule that contains a conjunction loses some

of the information in the original representation. For example, the translation does not

distinguish between the rule a A b A c A - d (cfl) and the rule a A - b A c /, _- d

(cfl). The original set of rules are still maintained in the system; they are executed and

change the state of the system as a side-effect.

2.1.4 Semantics of Object-Level Knowledge

ODYSSEUS contains a confirmation theory consisting of a decision procedure for

relations. The confirmation theory is implemented in LISP. This allows candidate knowl-

edge base repairs, in the form of tuples, to be tested for quality before being added to the

knowledge base.

Our confirmation theory is a partial theory with respect to the vocabulary of rela-

tions at this point: decision procedures have not been constructed for all relations. Inputs

to decision procedures, include the candidate repair, the ODYSSEUS induction program,

a set of correctly solved cases in the domain, the current knowledge base, the ODYSSEUS

explanation generator, and NEOMYCIN's explicit model of strategy reasoning.

2.1.5 Meta-Level Representation

In HERACLES, control knowledge is represented as tasks and metarules, which are

invoked by a forward-chaining task interpreter. A task is a procedure for accomplishing

some well-defined problem-solving subgoal. Examples of tasks are to test a hypothesis,

group and differentiate hypotheses, refine a hypothesis, forward reason, ask general ques-

tions, and process hard data.

Each method within a task procedure for achieving the task goal of the procedure

is called a metarule. Metarules do not contain object-level knowledge; they locate and

apply object-level knowledge by content-directed invocation (Davis, 1982). The metarule

21

premise consists of a conjunction of uninstantiated EDB clauses, c, A C2 A ... A c,. The

EDB i:icludes tuples that encode dynamic problem-solving state information. The task

interpreter determines if the set of EDB tuples allows the clauses of the metarules to be

unified. The bindings for variables in the premise are passed to the action part of the

metarule. The action of a metarule performs one or more of the following operations: call

another task (i.e., invoke a subgoal), request information from the user, modify dynamic

state information, or apply an object-level rule.

Tasks and metarules can be viewed as orchestrating the object-level knowledge:

they piece they piece it together in order to achieve a problem-solving goal. Currently

HERACLES contains approximately thirty task procedures and sixty metarules.

2.2 Relp'.. Research

-'here is a large body of past research that shares ODYSSEUS goal of automat-

;,,g the transfer of expertise. There is also a large body of past research that employs

ODYSSEUS technique of constructing explanations or plans to explain observed problem-

solving behavior. Thus our coverage of related research includes the subfields of knowledge

acquisition, machine learning, intelligent tutoring, plan recognition, and natural language

understanding.

2.2.1 Knowledge Acquisition

There are seven outstanding existing Al programs for semi-automating end-game

knowledge acquisition for expert systems: TEIRESIAS, SEEK2, INDUCE, ID3, RL, MORE

and LEAP. Each of these will be discussed in turn. Our discussion will emphasize the extent

to which they automate the three stages of learning: detecting deficiencies, suggesting

repairs, and validating repairs.

22

TEIRESIAS is a knowledge acquisition program for the MYCIN expert system that

pioneered research in knowledge acquisition for expert systems (Buchanan and Shortliffe,

1984; Davis, 1982). However, the difficult problem of detecting knowledge deficiencies

is circumvented by TEIRESIAS; it requires the use of a human expert who watches an

EMYCIN-based expert system solve problems, and who tells TEIRESIAS when a knowledge

base deficiency exists. Upon receiving this signal, TEIRESIAS unwinds the reasoning chain

relating to the questionable action of the expert system under the guidance of a hmnan

expert. The expert tells TEIRESIAS which rule to modify and how it should be modified,

and thus also plays a major role in suggesting and validating the repair.

SEEK2 aids knowledge base retienment of the EXPERT expert system (Ginsberg

et al., 1985; Politakis and Weiss, 1984). SEEK2 doesn't really debug a knowledge base;

rather, it 'tweaks' the existing heuristic rules to optimize problem-solving performance, us-

ing modification operators such as LOWER-CF and RAISE-CF (Ginsberg, 1986). We have

argued that that raising or lowering the certainty factors of rules, when those certainty

factors have been calculated using a representative case library, is without scientific foun-

dation and should not be practiced (Wilkins and Buchanan, 1986). When a representative

set of past cases is present, the strengths of inexact rules are determined, since certainty

factors can be given a strict probabilistic interpretation (Heckerman, 1986). Knowledge

bases are increasingly used for multiple purposes. Modifying correct object-level knowl-

edge to be incorrect, so that performance is improved for a particular function such as

diagnosis, lessens the likelihood that the same knowledge base can be used for other func-

tions such as design, explanation, and teaching.

INDUCE ID3, and RLcreate rule bases by induction over a case library (Michalski,

19-"', Quinlan, 1983; Pu and Buchanan, 1985). For these programs and SEEK2, a training

instance is an entire problem-solving session, not a single problem-solving action of an

23

expert as in ODYSSEUS. Hence, the training instances used by ODYSSEUS are finer-

grained, and can exploit the sequence information implicit in problem-solving protocols.

More importantly, the performance element associated with these four systems do not

contain strategy knowledge that attempts to mimic the problem-solving behavior of human

experts. Such strategy knowledge is important for ODYSSEUS, because it provides a basis

for following the line of reasoning of an expert, a key subtask in accomplishing fine-grained

deficiency detection.

MORE is an interactive manual method for improving the knowledge base of a

classification expert system (Kahn et al., 1985). The MORE program analyzes the form

of the knowledge base off-line, to see whether the knowledge base satisfies a set of pre-

specified constraints. The set of pre-specified constraints is somewhat analogous to a bug

library. One such constraint might be that every critical finding, such as a temperature

of 105 degrees Fahrenheit, must relate to at least one disease. If this is found not to be

the case, then MORE would inform the expert of this gap in the knowledge base. MORE

is interesting in that it automates the detection of deficiencies. Suggesting and evaluating

repairs is left to the human expert.

The LEAP learning system for the VEXED VLSI circuit design aid, currently under

development, is a noteworthy example of an apprentice learning system for a knowledge-

intensive task (Mitchell et al., 1985). The first two stages of apprenticeship learning, the

detection of deficiencies and the suggesting of repairs, are the responsibility of the human

expert who is using the VEXED circuit design aid. LEAP evaluates this repair using circuit

theory as an underlying theory of the domain, and then generalizes this repair.

It will be interesting to see if the LEAP approach is successful at refining the

knowledge base for the VEXED circuit design aid, because the LEAP approach makes two

assumptions that we suspect are false. First, LEAP assumes that it is unlikely to have

24

deleterious interactions between rules of the knowledge base, and our experience leads us to

believe that all knowledge-based expert systems will have interactions between elements.

Second, LEAP makes the assumption that the entire knowledge base can be supported

by a strong underlying domain theory, i.e., one that is capable of deductively proving

the validity of all elements of the knowledge base in a logical sense. We suspect that

all real-world systems have knowledge that cannot be supported in this fashion. Control

knowledge seems particularly resistant to this type of underpinning.

2.2.2 Machine Learning

Some of the earliest work in machine learning was directed at developing learn-

ing by watching programs in the areas of games and mathematics. Examples include

Samuel's checker program (Samuel, 1963), Waterman's poker player (Waterman, 1970).

and Mitchell's LEX program (Mitchell et al., 1983). In such domains, the detection of de-

ficiencies and the evaluation of repairs is usually quite tractable. GenerAly, this research

has not been of relevance to learning for expert system knowledge bases, because all object-

level knowledge is given at the start, and only the strategy knowledge for applying the

object-level knowledge is learned.

The problem solver used by Samuel's program was a book of championship checker

games. The detection of deficiencies was accomplished by seeing if the book move was the

same as the move that Samuel's checker program makes in the same situation. Suggest-

ing and validating r:pairs involved adjusting the coefficients of a polynomial evaluation

function for the selection of moves.

Waterman's exemplary progranmiing system is directed at synthesizing an algorith-

mic activity by observing multiple instances of its application (Waterman, 1978). This

method seems to work for synthesizing small programs such as performing a file transfer

25

between two computer systems.

Another program that learns in an apprenticeship context is the PRE system for

theory-directed data interpretation (Dietterich, 1984). PRE learns programs for Unix

commands from examples of the use of the commands. The learning program employs

constraint propagation to identify differences between the problem solver and the perfor-

mance program for commands.

The field of machine learning is undergoing a renaissance (Michalski et al., 1983;

Michalski et al., 1986; Mitchell et al., 1986) and at the center of this renaissance is ezpla-

nation based learning (EBL), also called explanation based generalization (EBG) (Mitchell

et al., 1986; DeJong and Mooney, 1986). EBL/EBG can be defined as the ability to acquire

new knowledge through intensive analysis of a single learning example (also called a train-

ing instance) using a domain theory. The major differences between EBL/EBG research

and ODYSSEUS relate to the use of explanation structures and the use of domain theories.

The creation of explanation structures is very central to EBL/EBG and ODYSSEUS.

For both of these efforts, the leaves of the explanation structure proof trees bind to tuples

of the domain theory. In ODYSSEUS, the domain theory is the object-level knowledge base

of an expert system. In EBL/EBG, a learning opportunity occurs when an explanation

structure is constructed using the domain theory. ODYSSEUS learning can only take

place when an explanation structure cannot be constructed from the domain theory. In

EBL/EBG, the domain theory is used to learn or operationalize concepts. In ODYSSEUS,

improvement to the domain theory, itself, is the objective of learning.

EBL'/EBG techniques require that the domain theory be capable of deductively

proving that the learning example is an instance of the concept to be learned. Human

expertise often involves inexactness, uncertainty, and the use of heu-istics; hence there

is no way in principle for a human expert or expert system to deductively prove their

26

conclusions in knowledge-intensive domains.

2.2.3 Student Modeling

A class of systems very closely related to apprenticeship learning has been developed

in the area of intelligent tutoring. Instead of an apprentice watching an expert, these sys-

tems involve an expert watching an apprentice during normal problem solving. Intelligent

tutoring research is very relevant to the apprenticeship learning approach we are taking.

The chief skill needed in the detection of knowledge base deficiencies is the ability to follow

the line of reasoning of a human problem solver; this is achieved by a comparison of the

actions of the problem solver to the prediction of a program that also knows how to solve

the problem. There has been excellent research in a formal mathematical domain that

focused on following the line of reasoning of a human problem solver and that emphasized

the importance of having a cognitively plausible performance element. Examples include

DEBUGGY (Brown and Burton, 1978), Repair and Step Theory (Brown and VanLehn,

1980; VanLehn, 1983), DPF and ACM (Ohlsson and Langley, 1985; Langley et al., 1984),

LMS (Sleeman and Brown, 1981), ACT (Anderson, 1983), and the MACSYMA-ADVISOR

(Genesereth, 1981). Other research in a formal games domain includes the WHY (Collins

et al., 1987), WEST (Burton and Brown, 1982) and WUMPUS (Goldstein, 1978) programs.

This activity of following the line of reasoning goes under many names, such as cognitive

diagnosis, student modeling, model tracing, and automated protocol analysis.

In intelligent tutoring the goal is to 'debug' a human problem solver. Many intelli-

gent tutoring systems contain a performance elements that is capable of solving the same

problem that is given to the student and model the student against the performance ele-

mer.t, including the WEST program in the domain of games (Burton and Brown, 1982), SO-

PHIE III and GUIDON in the domain of diagnosis (Brown et al., 1982; Clancey, 1979), and

27

MACSYMA-ADVISOR in the domain of symbolic integration (Genesereth, 1982). There

are many sinilarities between MACSYMA-ADVISOR and ODYSSEUS. Both take as input

a sequence of actions of a problem solver, and try to recognize the plan of the problem

solver. SOPHIE III uses an expert system for circuit diagnosis as an aid in isolating hy-

pothesis errors in the behavior of students who are performing electronic trnibleshooting.

GUIDON is built over the MYCIN expert system for medical diagnosis (Buchanan and

Shortliffe, 1984); student hypothesis errors are discovered in the prccess of conducting a

Socratic dialogue.

There is are interesting parallels between VanLehn's SIERRA system (VanLehn,

1983) and the ODYSSEUS system. Both learning systems try to explain the observed

problem-solving behavior, using different methods of completing explanations. SIERRA's

domain is mathematical subtraction, so the global credit assignment is trivial: a computer

simply needs to check whether the problem solver subtracted correctly. In conjecturing

repairs, both SIERRA and ODYSSEUS begin with the single fault assumption. SIERRA al-

lows one new subprocedure while ODYSSEUS allows one new declarative domain fact. The

principal difference between them is that SIERRA's focus is learning procedural knowledge

while ODYSSEUS' focus is learning declarative factual knowledge.

There are three reasons why this intelligent tutoring research fails to solve the prob-

lems faced by ODYSSEUS in automating knowledge acquisition for expert systems. First,

most work uses a bug library to determine differences between a model of the problem

domain and the behavior of a human problem solver. The use of a bug library destroys the

symmetry between learning and teaching, and thus makes this work inapplicable. Second,

it is carried out in formal domains such as mathematics and game worlds that intro-

duce simplifying assumptions not present in the informal domains in which some expert

systems operate. Third, it focuses on learning procedural knowledge and detecting proce-

28

dural errors, and ODYSSEUS focuses on learning and detecting deficiencies in declarative

object-level knowledge. Nevertheless, the intelligent tutoring work serves as a source of

inspiration, and our work can rightfully be viewed as an attempt to extend this previous

work into informal domains where the knowledge to be refined and debugged is declarative

object-level knowledge.

2.2.4 Neomycin-based Modeling Programs

In addition to ODYSSEUS there are two other modeling programs currently under

construction within the NEOMYCIN framework that relate to the transfer of expertisp,

This section describes the differences between these efforts and ODYSSEUS.

Whereas ODYSSEUS attempts to detect knowledge base discrepancies in a knowl-

edge acquisition setting by following the line-of-reasoning of a problem solver, the GUIDON-

DEBUG program detects discrepancies by analysis of the problem solution that is con-

structed when the NEOMYCIN expert systems solves a problem (Clancey, 1986; Clancey,

1987). GUIDON-DEBUG analyzes the problem solution to determine whether it satisfies

a set of pre-specified constraints. For example, in a medical diagnosis domain, certain

findings are marked as critical findings, such as a temperature of 105 degrees Fahrenheit.

A pre-specified constraint on critical findings used by GUIDON-DEBUG is that the final

diagnosis must explain the critical findings. So GUIDON-DEBUG checks to see whether the

final diagnosis explains this critical finding, and if not, the expert is informed that there

is an error in the expert system knowledge base. The GUIDON-DEBUG approach is most

similar to the MORE system for knowledge acquisition. Like MORE. GUIDON-DEBUG

addresses the problem of detecting and pinpointing areas of the knowledge base where

there are deficiencies. However, neither GUIDON-DEBUG nor MORE generate the space

of potential repairs or evaluate the correctness of repairs.

29

GUIDON-DEBUG is also useful for intelligent tutoring: a student watches the pro-

gram produce an evolving representation of the solution of the expert system. This evolv-

ing solution is called a Patient Specific Model, a concept developed in ABEL (Patil et al.,

1981). The hypothesis under investigation in GUIDON-DEBUG is that the student's strate-

gic reasoning will improve by being exposed to a display of NEOMYCIN's strategic rea-

soning. Editing the patient specific model provides the student with an opportunity to

debug the NEOMYCIN knowledge base.

The IMAGE program is another modeling program that uses the NEOMYCIN expert

system as a foundation (London and Clancey, 1982). Whereas, the goal of ODYSSEUS is

to detect discrepancies in the object-level knowledge, the goal of IMAGE is to identify the

meta-level strategy being used by the student problem solver, and detect when the meta-

level strategy of a student is different from that of NEOMYCIN. Unlike ODYSSEUS, IMAGE

is only applicable to student modeling; it is not applicable to knowledge acquisition, i.e.,

the learning of new strategy metarules for NEOMYCIN. The use of an underlying domain

theory is not relevant to IMAGE.

IMAGE faces a very difficult task. Following a strategy of a student becomes al-

most impossible if the medical domain knowledge of the student is much different from

the NEOMYCIN expert system. Protocol experiments and the use of the ODYSSEUS ex-

planation generator have revealed that a student problem solver does have much different

domain knowledge than an expert and expert system. Free-form protocol experiments

of second-year medical students were collected by by Bill Clancey, Curt Kapsner, M.D.,

Bob London, and David Wilkins. These were processed by the ODYSSEUS LORE gen-

erator, and this revealed that the knowledge used by a student in solving problems in

the NEOMYCIN domain is not in NEOMYCIN on 75% of the data requests made by the

student. This means that there is a cognitive tear in the model produced by the student

30

modeler on 75% of the observed actions of the student. The concept of a cognitive tear is

due to Brown and Burton and refers to the problem a student modeler faces when noise

masquerades as data (Burton and Brown, 1982). Not only does a modeler lack a basis for

producing a correct interpretation on 75% of the data requests, but these data request will

most probably lead the strategy modeler astray in producing the correct interpretation on

the remaining 25% of the data requests, where the correct interpretation can in principle

be determined. Based on this result, we conjecture that it is impossible in principle for

IMAGE or any modeling program to follow the strategic reasoning of a student, when

using the NEOMYCIN knowledge base.

2.2.5 Plan Recognition and Language Understanding

There has been a great deal of research on failure-driven learning that monitors

control and planning knowledge (Mitchell et al., 1983; Korf, 1985; Minton, 1985). The goal

of these research efforts is to create better control knowledge so as to speed up problem

solving, rather than to learn domain-specific factual knowledge. This compliments our

approach, as we do not address the learning of control knowledge for a problem-solving

method; in other words, we do not learn Heracles strategic tasks and metarules.

The ODYSSEUS approach has strong similarities to work in natural language un-

derstanding (Charniak, 1977; Dyer, 1973). This research tries to determine the reasons for

and the assumptions in stories. The work on memory organization packets (MOPs) pro-

posed by Schank provides a technique for failure-driven learning (Schank, 1982). These

systems perform generalizations to modify their memory structures just enough to ac-

count for new information. The precondition analysis method of the Silver's LP program

for ,arning algebraic equation solving is also relevant, because of its emphasis on the use

of meta-level reasoning (Silver, 1986). However, in this work and much work in plan-

31

ning and plan recognition, the goal is to learn new (meta-level) control knowledge, not

(object-level) domain knowledge.

In plan recognition, a sequence of operators is sought that deductively proves that

the associated sequence of actions will achieve a goal. In ODYSSEUS, a sequence of opera-

tors (i.e., metarules) is also sought. In planning, complete information is usually available

concerning the objects in the world, and this makes it easy to determine whether a given

operator is applicable in the current world state. The world state information used by

ODYSSEUS is based on beliefs concerning conclusions about object-level variables, so there

is a great deal of plausible reasoning involved, as well as making and retracting beliefs in

an attempt to find an explanation for the observed human behavior. Most plan recog-

nition approaches to expert modeling, such as the MACS ' NIA-ADVISOR, HACKER, and

BELIEVER, uso! a plan bug library approach (Genesereth, 1982: Sussman, 1976; Schmidt

et al., 1978). The ODYSSEUS approach does not require a bug library of any sort.

2.2.6 Automatic Programming

In automatic programming, the synthesis of LISP and PROLOG functions from

example traces falls under the rubric of apprenticeship learning (Biermann, 1978; Shapiro,

1983a). The training examples consist of the input/output behavior of a correct program.

The learning program modifies the performance element whenever the program being

synthesized does not give the same output when given the same input.

CHAPTER 3

DETECTING DEFICIENCIES

IN A KNOWLEDGE BASE

In the performance model of learning (Buchanan and Mitchell, 1978), detecting that

the performance element has a deficiency is a prerequisite to making repairs to the object-

level knowledge base. The detection of a deficiency requires comparison of the performance

element to a performance standard. The performance standard used by different learning

programs varies widely; it can be a metric that relates directly to the knowledge base or

one that relates to a performance element that uses the knowledge base.

When learning by watching an expert, the performance standard used by ODYSSEUS

to detect deficiencies is the expert's problem solving steps. When learning by watch-

ing a student, the performance standard is the knowledge base of the expert system.

When learning from experience the performance standard is that the premises of strategy

metarules should succeed. The main purpose of this chapter is describing the techniques

that ODYSSEUS uses to detect deficiencies using these performance standards; these tech-

niques are described in Sections 3.2 and 3.3. In order to provide perspective, Section 3.1

surveys the six most common performance standards used by machine learning programs

to detect deficiencies.

32

33

Learning performance standard Learning program ezamples

External: problem solution META-DENDRAL, ARCH, INDUCE,

RL, SEEK2, GENESIS, SIERRA

External: problem solution steps Samuel, ARMS, ODYSSEUS

External: environment HACKER, Genetic Algorithm

External: oracle - human TEIRESIAS, LEAP

Internal: efficiency LEX, LP, SOAR, Korf

Internal: correctness AM, MORE, GUIDON-DEBUG

Table 3.1: All learning programs need a performance standard against
which to judge the performance element to be improved. The six differ-

ent standards used by existing learning programs are shown, along with
examples of programs in each category. The standard used in a learning
by watching an expert apprenticeship is the observed problem solution
steps of a human expert.

3.1 Methods of Detecting Deficiencies

The six major ways of recognizing that a deficiency exists are shown in Table 3.1.

The process of detecting deficiencies strongly localizes the source of the problem. This is

especially true when the detection of deficiencies is accomplished by the use of an oracle.

3.1.1 Problem Solution as External Standard

Learning programs are often given the correct solution to the problem being solved

by the performance element. This correct solution serves as a performance standard. It is

compared to the solution produced by the performance element to determine if the perfor-

mance element is in error. For example, in trying to improve the DENDRAL performance

element for determining chemical structure, META-DENDRAL is given mass spectrogram

34

data describing the chemical structure to be identified and the problem solution that is

the correct chemical structure as determined by a human expert.

Winston's ARCH improves a performance element for classifying scenes as arches.

ARCH is given a semantic network representation of a scene and the correct solution, i.e.,

whether the scene is an arch.

The ARCH program is a representative of the very large class of concept learning

programs that are given a classified training instance, which consists of a problem and

it's correct solution. Learning programs for diagnostic expert systems, such as INDUCE,

SEFK2, and RL, are also given a classified training instance.

Explanation based learning programs are also given a classified training instance,

for example the GENESIS program. The program is given a kidnapping story and told

that the story is a method of achieving wealth. Initially the performance element does not

contain a schema for kidnapping. In can only explain a kidnapping story as a conjunction

of two schemas. After being given the training instance, the GENESIS program is able to

acquire the concept schema of kidnapping. The GENESIS program actup'iy uses two of

our external performance standards: the problem solution and the problem solution steps.

3.1.2 Problem Solution Steps as External Standard

A variation on being given the problem solution is to be given the individual steps

that a problem soiver might take to arrive at a correct solution. The classic example of

this is Samuel's checker player program. Just being told the problem solution to a game of

checkers would not be of much help to a learning program intent on improving a checker

playing program. But by being given the substeps that lead to a winning game, Samuel's

program can better localize the parts of the performance element that must be improved.

A recent very nice example of using problem-solving steps as tne performance stan-

35

dard is the ARMS learning apprentice in the domain of robot assembly (Segre, 1979).

Seeing the individual assembly steps allows ARMS to program a robot arm to mimic the

observed assembly task. Note that unlike Samuel's checker play, the performance ele-

ment's general ability is not increased, only its ability on problems that are identical in

whole or part to those ARMS has previously observed.

The ODYSSEUS program described in this thesis shows that problem-solving steps

also are a powerful aid to in learning to solve heuristic classification type problems. Pre-

vious learning programs in medical diagnosis, such as INDUCE, ID3, SEEK2, and RL, are

given the set of data requests made by a physician as an unordered set, and also the

final diagnosis. By contrast, ODYSSEUS treats each individual data request as a training

instance.

3.1.3 Environmental Feedback as External Standard

Some learning programs use feedback from the environment of the performance

element to detect a deficiency in the performance element. The performance element

to be improved operates in a real-world or micro-world environment and the learning

program has access to information on whether the performance element succeeds or fails

at achieving a goal or subgoal. This requires that the goal of the performance element be

explicitly stated, and that there is some means of determining whether the goal is met.

The genetic algorithm works in situations where there is a population of perfor-

mance elements that are trying to achieve some goal (Holland, 1975; Holland, 1986). The

performance elements with the better performance are saved and the other elements are

discarded. These saved elements are modified is small ways, by operations such as point

mutation or crossover. Crossover is a process of creating a new performance element by

combining parts of two other performance elements. HACKER develops a plan to accom-

36

plish a goal, and monitors the execution of this plan. This allows detecting planning steps

that fail to achieve a goal (Sussman, 1976).

3.1.4 Oracle as External Standard

An oracle can provide a performance standard. The oracle observes and critiques

the performance element to be improved. This is the method used by TEIRESIAS. A

physician watches MYCIN solve problems, and tells TEIRESIAS when a problem-solving

-tion ;- wrong. The physician would also provide critiquing information as TEIRESIAS

unwoUnd the reasoning chain that lead to the inexplicable action. The LEAP apprentice

in the domain of VLSI circuit design also relies on an oracle. When a circuit designer finds

the VEXED circuit design aid to lack a needed circuit implementation rule, the circuit

designer signals LEAP the the VEXED knowledge base is lacking a circuit implementation

rule.

3.1.5 Efficiency as Internal Standard

It is possible for a learning program to have an internal standard of performance,

and improve a performance element even though it never actually fails at a task. If

solving a problem can be reduced to searching a problem space, learning from experience

reduces to determining search knowledge that will to make the program more efficient.

Often learning programs will analyze a performance trace of a performance element to

determine if the performance element can be made more efficient. LEX and SOAR do this

type of learning (Mitchell et al., 1983; Laird et al., 1987). Generally, programs that learn

control knowledge would fall into this category.

37

3.1.6 Correctness as Internal Standard

The only two internal standards for detecting deficiencies are the efficiency and the

c-rrectness of the performance element.

A learning program might not know the correct solution but have a set of constraints

thac the performance element's knowledge structures or solution must meet. MORE and

AM provide examples of constraints on knowledge structures. In the domain of diagnosis,

MORE expects every finding to relate to at least one hypothesis. AM wished to see the

slots of its mathematical concepts filled; an empty slot means that a concept is not fully

defined, and this sent AM off to try to fill the slot. On heuristic classification problems,

GUIDON-DEBUG requires that the solution explain all 'significant' findings. The "signifi-

cant" findings constraint is also used by INTERNIST and PIP to determine when the the

final solution is adequate. Until this constraint is met, INTERNIST continues to gather

more information on the patient.

3.2 Detecting Deficiencies When Learning by Watching

We will now provide the details of the technique for detecting discrepancies used

by the two major apprenticeship scenarios: learning by watching and learning from expe-

rience. As the reader will recall from Chapter 1, the situation in which ODYSSEUS detects

deficiencies when learning by watching is as follows. The human specialist is given a prob-

lem to solve and produces the type of behavior that was illustrated in Figure 1.5. The

specialist may or may not provide goal information with each data request that is made.

The objective of ODYSSEUS is to generate a set of explanations for each observed action

of th- specialist. When there are no explanations, ODYSSEUS assumes the performance

element knowledge base has a deficiency.

38

Strategy Interpreter
Model Constraints

Action to Reverse Set of Caudidate
Explain Interpreter Explanations

Static Domain KN

Dynamic Domain KN I

Info from Belief Knowledge
Prior Actions of Problem State

Figure 3.1: ODYSSEUS method of detecting discrepancies in a 'learn-
ing by watching' apprenticeship situation. An empty explanation set

suggests a knowledge discrepancy.

3.2.1 Finding Explanations by Reverse Interpretation

For each observed action of the specialist, ODYSSEUS does a constraiaed gener-

ation of a set of Line of Reasoning Explanations (LOREs). A LORE relates an action

A to an abstract strategic goal G via a skeletal rule path, that is, A - T -- T

- G. In our representation of LOREs, A is the action of an expert, R i is a HER-

ACLES metarule, T is a IERACLES' task, and the goal G is a HERACLES' task that

represents a high-level general goal. Examples of high-level goals are Test.Hypothesis,

Group.and.Differentiate.Hypotheses, and Clarify.Finding. Given A, all sequences of strate-

gic metarules beginning with A and leading to a goal are in the LORE set of A; from

the perspective of the apprentice, the set delimits the possible interpretations that can be

39

attributed to the specialist's action A, in all possible worlds defined by the vocabulary of

the expert system.

ODYSSEUS method of detecting discrepancies by the construction of LOREs can

best be viewed as running the HERACLES expert system backwards. ODYSSEUS acts as a

'reverse interpreter' of HERACLES's metarules. For each observed action of the specialist,

ODYSSEUS starts with the metarule Request.data, since this is the place where HERACLES

performs observable actions, and backchains through the metarules in an attempt to create

a path between the Request.data metarule and a high-level active goal.

HERACLES solves problems by starting with the high-level goal Make.Diagnosis, and

problem solving at the mieta-level involves forward chaining through metarules. Whenever

a particular metarule within the task Findout is invoked, HERACLES performs an observ-

able action, namely, it makes a data request. The HERACLES task interpreter is always

trying to find a set of bindings for the clauses in a metarule premise; if it succeeds, then

this metarule succeeds, and these bindings are passed to the action of the metarule.

By contrast, ODYSSEUS starts with a binding for a variable in the action of the

Request.data metarule; the variable is bound to the value of the data request made by

the expert. ODYSSEUS then tries to find a bindings for variables in the premise of the

metarule that are consistent with earlier bindings. HERACLES uses a logic programming

format for metarules, namely that of the logic programming language MRS, but actually

translates the metarules into LISP code before iiERACLES is run for efficiency reasons.

This makes the reverse interpretation process a very difficult one. Until HERACLES can

be run with a logic progranuning interpreter, ODYSSEUS must contain specialized code

for each inetarule that runs the metarules backward. One terminating condition used by

the reverse interpreter of ODYSSEUS is only to search chains of metarules that are less

than eight metarules long. Another constraint is to terminate the search for explanations

40

after the first one is found. This is allowable, since a discrepancy is detected only when

the explanation set for a data request is null.

An important requirement in the reverse interpretation process is to know the

dynamic state information of the expert system. This is obtained by ODYSSEUS by

running HERACLES task Forward Reasoning, on each new piece of information on the

patient that is learned.

3.2.2 The Strategy Space of Heracles

When ODYSSEUS runs HERACLES in a 'reverse interpretation' mode, it can be

viewed as finding all interpretations that correspond to deletion and reordering of metarules,

that is to the three inner rings shown in 3.2. The tasks for the metarules impose a rigid

format on the order in which metarules are tried. The space of all reorderings of metarules

represents a relaxation of this ordering constraint. When no LORE can be discovered this

means that there is a domain knowledge difference or there is a strategic method used by

the user that is not encoded in HERACLES's metarule. An example of a strategy often

used by physicians that is not in HERACLES's metarules is a 'rule ou " strategy. Such

a strategy confirms the presence of a disease by ruling out all its logical competitors.

HERACLES is currently not designed to use rules with a negative certainty factor, and so

implementing a rule out metarule would not be easy.

A potentially more powerful learning method that might detect discrepancies missed

by ODYSSEUS would be to generate only explanations (i.e., find metarule sequences) that

are equivalent to tIERACLES, which are a subset of the ODYSSEUS set, as Figure 3.2 makes

clear. Behavior is equivalent to HERACLES if the differences are caused by allowable re-

ordering of domain knowledge elements or metarule invocations. Such a modeler would be

more powerful than ODYSSEUS, because in addition to detecting domain knowledge errors,

41

Strategy of problem solver
may or may not be within arbitrary reordering of metarules

Strategy of problem solver
is within arbitrary reordering of metarules

Strategy of problem solver

is equivalent to expert system

Strategy of problem solver

is equal to expert system

Figure 3.2: Degrees of strategy differences between specialist and ex-
pert system for a particular data request. ODYSSEUS' method finds all
possible explanations assuming that the strategy of the expert is within
an arbitrary deletion or reordering of strategy metarules.

it would detect situations where the difference between the program and the specialist is

that the specialist is using a strategy that HERACLES finds inappropriate. This would be

of particular interest when the specialist was a student. This is a much harder problem,

and is actually the approach that an early student modeler for HERACLES, called IMAGE,

attempted to take (London and Clancey, 1982). This approach requires running HERA

CLES through all forward moves, and is complicated by the fact that HERACLES liberally

stores state information on property lists, on global variables, and on the LISP interpreter

stack, so the expert system cannot easily be returned to as earlier problem-solving state.

Doing a state-space search without complete state information is difficult. This approach

will be more feasible when a Truth Maintenance System is added to IIERACLES.

42

3.3 Detecting Deficiencies When Learning from Experi-

ence

HERACLES ODYSSEUS

Task Learning
Interpreter Critic

Rule

Meta-Level Strategy KN Fails =Confirmation3
(Tasks and Metarules) Theory

_ _ Modify

Domain I Factual KB Underlying
Rules Database Domain Theory

Figure 3.3: The relation between HERACLES and ODYSSEUS in a learn-
ing from experience apprenticeship scenario. If a metarule premise fails
while HERACLES is solving problems, this suggests that there may be
a gap in the knowledge base. ODYSSEUS attempts to locate knowl-
edge that allows the metarule to succeed. If such knowledge is found,
ODYSSEUS adds it to the HERACLES knowledge base.

A knowledge base gap will almost always cause a metarule premise failure. This

section describes how control knowledge is monitored for failure of strategy inetarule

premises, thereby allowing the detection of gaps in the knowledge base. An overview of

the learning method to be described is shown in Figures 3.3 and 3.4. This section also

illustrates the role of strategy knowledge in the use of an underlying domain theory for

learning. The strategy metarules of HERACLES reference object-level knowledge where

different 'types' of object-level knowledge, in a progranuning language sense, are repre-

sented in different EDB relations. This provides a foundation for the integration of an

43

underlying domain theory into a learning system, because justification of different types

of new knowledge usually requires different ways of using an underlying domain theory.

We advocate the construction of a decision procedure for each EDB relation that specifies

how the relation is defined and justified in terms of an underlying domain theory.

Monitor Meta-Level
Strategy Knowledge]

Detect KB
Deficiency No

Conjecture KN
Suggesti That Completes
KB Repair Metarule Premise

No Nw KNConfirmation

Theory

Evaluate -

KB Repair Yes

Modify Underlying 2
C ct-Level KN Domain Theory

Figure 3.4: ODYSSEUS' method for learning from ezperience.
ODYSSEUS monitors the problem solving behavior of an expert system.
Failure of a metarule suggests a knowledge base discrepancy. The second
and third stage are very similar to the learning by watching scenario.

A deficiency in the knowledge base is suspected whenever the premise of a metarule

fails. The preconditions of HERACLES' metarules fail between 60% and 70% of the time.

In a typical NEOMYCIN consultation 500 to 2000 metarules premises are tried. The

44

overriding reason for failure is that the knowledge base does not contain the knowledge

necessary to instantiate the EDB relations in the metarule premise. These are potential

learning opportunities. ODYSSEUS monitors metarule failures and then determines which

relations in the premises are responsible for the failure. If a failed relation indexes dynamic

state information or is used to control the meta-level reasoning, then there is no object-

level learning opportunity. However, if a failed conjunct is the type that accesses the

domain knowledge base, then this is a learning opportunity. Given this failed clause, the

second and third stages of ODYSSEUS attempt to suggest and evaluate changes to the

knowledge base related to the clause that would allow the failed clause to succeed. If such

knowledge is found and is added to the knowledge base, the metarule will succeed in the

future in a similar situation.

CHAPTER 4

SUGGESTING REPAIRS

TO A KNOWLEDGE BASE

Given evidence of a knowledge base deficiency, a learning program must suggest (or

request an expert to suggest) a repair to the knowledge base that addresses this d-ficiency.

Methods of suggesting repairs take as their starting point localization information provided

by the method that detects deficiencies. For example, when ODYSSEUS cannot explain

an action and thereby detects a potential deficiency, the suggested repair is directly or

indirectly related to the action.

Extant learning programs use a variety of methods of suggesting these repairs. In

this chapter, we first survey the seven most common techniques used by learning programs.

The techniques used by ODYSSEUS are then presented.

4.1 Techniques for Suggesting Repairs

The seven most connonly used techniques for suggesting repairs, along with ex-

amples of learning programs for each of these techniques. is shown in Table 4.1. Each of

these will be discussed in turn.

45

46

4.1.1 Mutation and Crossover

Giving a population of performance elements, a novel means of suggesting repairs

is to combine or 'crossover' pieces of successful performance elements. Crossover is a form

of survival of the fittest and is much more sophisticated than random mutation. Holland's

genetic algorithin pioneered this approach (Holland, 1975).

AM mutated LISP code to learn high-level symbolic structures (Lenat, 1976). This

approach worked because of the close similarity between LISP and the high-level symbolic

concepts to be learned, which were concepts from elementary set theory. The usefulness

of using this approach to learning high-level symbolic concept structures in other domains

by mutation has not yet been successfully demonstrated.

Technique that suggests KB repair Learning program examples

Mutation, Crossover Genetic Algorithm, AM

Weight Adjustment Samuel, SEEK2, Connectionist

Rule Generalization META-DENDRAL, INDUCE, RL, LEX,

LEAP

Plan Generalization SOAR, BUCKET-BRIGADE, ARMS,

GENESIS

Plan Completion SIERRA, PRE, ODYSSEUS

Analogy MACBETH, NLAG, Russell

Oracle - human TEIRESIAS, LEAP, MORE, GUIDON-

DEBUG

Table 4.1: The different methods used by learning programs to suggest

knowledge base repairs.

47

4.1.2 Weight Adjustment

The best examples of weight adjustment are the connectionist approach to Al and

the version of Samuel's checker player that used a polynomial evaluation function (Samuel,

1963). Learning is reduced to the adjustment of weights.

4.1.3 Rule Generalization

A common technique for suggesting changes is by generalizing or specializing rules.

When the performance element produces the incorrect answer, we changes consistent with

past solved cases that allow the performance element to work better, which is a form

of generalization grounded in similarity based learning. Alternatively, we can take an

explanation based learning approach to the generalization or specialization. The various

ways a knowledge element can be generalized or specialized is very nicely described by

Dietterich and Michalski (Diettcrich and Buchanan, 1981).

4.1.4 Plan Generalization

Generalizing a plan (by generalizing an operator that is part of the plan) is another

way of postulating a change. Backward propagation and goal regression are popular

means of locating the part of the plan that requires generalization or specialization. Most

EBG/EBL systems use this approach as does SOAR (DeJong, 1986; Mitchell et al., 1986;

Laird et al., i984)

4.1.5 Plan Completion

In plan completion, the sequence of operators that form part of the plan are not

changed. However, knowledge that binds to the operators is modified.

SIERRA examines all minimal modifications to a procedure for subtraction, in

48

search of one that provides an explanation of observed student subtraction bugs (Van-

Lehn, 1983). In ODYSSEUS, the clauses of a LORE specify constraints that a declarative

knowledge base must satisfy for the LORE to be true. ODYSSEUS can be viewed as search-

ing the space of minimal knowledge base modifications in search of one that will satisfy

all the constraints imposed by a LORE.

4.1.6 Analogy

Analogy is an example of a deductive method for suggesting knowledge base repairs.

Determinations fall into this category (Russell, 1986).

4.1.7 Oracle

A cooperating human expert provides a learning program with an oracle for suggest-

ing repairs. Manual methods of postulating changes to a knowledge base include MORE,

GUIDON-DEBUG, TEIRESIAS, and LEAP (Kahn et al., 1985; Clancey, 1987; Davis, 1982;

Mitchell et al., 1985). In the LEAP system, after the circuit designer signals LEAP that

there is a missing implementation rule, the circuit designer must enter the implementation

rule into the computer. LEAP generalizes this rule, if this is required. In a similar fashion,

TEIRESIAS requires that a cooperating expert enter the missing rule or modify an existing

rule. Given this information, TEIRESIAS partially validates the correctness of the entered

rule.

4.2 Suggestin- Repairs When Learning by Watching

We will now provide a description of the technique used by ODYSSEUS to suggest

object-level repairs when learning by watching. Recall that .nowledge base deficiency is

detected when a human problem solver performs an action, and ODYSSEUS is unable to

49

create a LORE explanation that shows how the action relates to a high-level goal. The sub-

system of ODYSSEUS that detects deficiencies provides the subsystem of ODYSSEUS that

suggests repairs with three important pieces of information: the name of the unexplained

action, an ordered list of the most likely high-level goals to which this action relates, and

beliefs regarding dynamic state information such as what hypotheses and data requests

are believed to be false. Determination of the beliefs of the human problem solver is made

by running the expert system on all past data requests.

The method used to suggest repairs is to relax the constraints on the construction

of LOREs. We begin with the single fault assumption, allowing a metarule to become part

of a LORE, even though a clause in the metarule premise fails. If allowing a single clause

in a single metarule to fail results in the creation of a LORE, then any EDB tuple that

allows the clause to unify is a suggested repair.

4.3 Suggesting Repairs When Learning From Experience

We now describe the technique used by ODYSSEUS to suggest knowledge base

repairs when learning from experience. Only part of the value of an apprenticeship derives

from having the novice watch experts solve problems; much of the value derives from

having the novice attempt to use his or her fledgling expertise to solve problems. Our

method concentrates on learning by doing, where learning occurs when the problem solver

lacks the domain-specific knowledge to apply problem-solving methods.

Suggesting repairs when learning by experience is very similar to the situation of

learning by watching. Indeed, it uses the same code, and provides much more focused

input than in learning by watching.

In learning from experience, the subsystem of ODYSSEUS that detects discrepancies

provides the subsystem of ODYSSEUS that suggests repairs with very detailed information.

50

The input to the subsystem that suggests repairs is the name of the metarule that failed,

the known bindings for variables in the clauses of the metarule premise that have been

determined outside of the scope of the metarule, and a 1,iowledge of the range of values

that each variable in a metarule clause is allowed to assume. So notice we are in the same

situation as learning by watching, but do not have to locate the metarule that failed, nor

require the deficiency detector to conjecture the high-level goal. These are the advantages

to being able to tap directly into problem solver, which is possible when the problem

solver is an expert system. As in learning by watching, the repair suggester generates all

allowable variable bindings for the unbound variables in the failed clause. These tuples

are then passed on to the ODYSSEUS subsystem that evaluates proposed repairs.

4.4 Example of Suggesting Repairs

An example will help to make clear the process of suggesting repairs for the learning

by watching scenario. The output of the subsystem that detects deficiencies is the name

of the unexplained action, which in this case is visual problems, and the potential focus of

the high-level goal, which is viral meningitis. The ODYSSEUS subsystem that generates

repairs produces the following conjectures:

evidencefor(diplopia acute-meningitis R1 cf)

evidencefor(photophobia acute-meningitis R1 cf)

general-question(visual-problems)

clarify-questions(nausea visual-problems)

The first candidate repair suggests that there is a rule missing that contains diplopia

in its premise and provides evidence for acute meningitis in its conclusion. The second

candidate is similar, and suggests a rule is missing that contains photophobia in its premise

51

and provides evidence for acute meningitis in its conclusion. The third candidate repair

suggests that visual problems is a general question that should be asked of all patients.

The fourth repair states that visual problems is a clarifying question for nausea. Inclusion

of any of these repairs in the knowledge base would lead to a completed explanation of

the physician's action. The candidates are generated in order of decreasing plausibility.

Normally, ODYSSEUS evaluates each candidate as it is generated, and stops when the first

candidate is accepted by the repair evaluator. Evaluation of repairs is the subject of the

next chapter.

We will give a detailed explanation of how the first two candidate repairs are

generated. By allowing a single clause in a single premise to fail, many metarule chains are

successfully constructed between the unexplained action and a high-level goal. The chain

asso *ated with the first two candidate repairs shown above consists of six metarules; they

form a chain from the action visual problems to the high-level goal group.and.differenti-

ate.hypothesis viral.meningitis. The goal in the action of one metarule connects to the same

goal in the premise of the next metarule. The six metarules are as follows.

MetaRule 1: Group.and.Differentiate.Hypotheses

IF: goal(group.and.differentiate.hypotheses($hypothesis1)) A

active.hypothesis($hypothesisl) A

parent($hypothesisl $hypothesis2)

THEN: goal(test.hypotheses($hypothesis2))

ENGLISH: If the current goal is to group and differentiate hypotheses

and there exists an active hypothesis

and this active hypothesis has a parent

and the likelihood of this parent is currently unknown

52

then test this parent hypothesis.

MetaRule 2: Test.Hypothesis

IF: goal(test.hypothesis($hypot hesis2)) A

evidence.for($findingl $hypothesis2 Srulel $cfl) A

unknown(rule.applied($rulel))

THEN: goal(applyrule($rulel))

ENGLISH: If the current goal is to test a hypothesis

and there is a rule that gives evidence for this hypothesis

and this rule is unknown

then apply this rule.

MetaRule 3: Applyrule

IF: goal(applyrule($rulel)) A

in.premise($findingl) A

unknown(parm.applied($findingl))

THEN: goal(findout($findingl))

4r

ENGLISH: If the current goal is to apply a rule

and a finding in the premise of the rule is unknown

then try to find out the value of this finding.

MetaRule 4: Findout.by.Subsumption

IF: goal(findout($findingl)) A

,ubsumed.by($finding1 $finding2) A

53

boolean($finding2) A

unknown(concluded($finding2)) A

askfirst($finding2)

THEN: goal(findout $finding2)

ENGLISH: If the current goal is to find out a finding

this finding is subsumed by another finding

and this parent takes boolean values

and this parent is currently unknown

and to find out the value of this finding first ask the user

then find out the value of this parent finding.

MetaRule 5: Findout.by.Asking.User

IF: goal(findout($finding2)) A

askfirst($findingl Sfinding2) A

not(value-known($finding2))

THEN: goal(ask-user($finding2))

ENGLISH: If the current goal is to findout the value of a finding

and to findout the value of this finding first ask the user

and finding2 is currently unknown

then ask the user the value of this finding.

The previous metarule chain can he collapsed into the following rule. This rule

shows all the clauses of dolnain knowledge that are relevant to explaining why the action of

asking visual problems relates to achievement of the high-level goal

54

group.and.differentiate.hypothesis viral meningitis.

IF: goal(grou p.a nd. differentiate. hypot heses($hypothesisl) A

active. hypothesis($ hypot hesis I) A

parent($ hypothesisl $hypothesis2) A

evidence.for(Sfindingl Shypothesis2 $rulel $cfl) A

unknown(rule.applied(Sruiel)) A

in.premise($findlingl) A

unknown(parm.applied($findingl)) A

subsumed.by($findingl Sfinding2) A

booiean($findling2) A

unknown(concluded($finding2)) A

askfirst($finding2) A

askfirst($findingl $finding2) A

not(value-known($finding2))

THEN: goal(ask-user($finding2))

ENGLISH. If goal is to group $hypl

then ask the user the value of this finding.

In the example in which our learning critic was called into play, $active. hypothe-

sis consisted of seven hypotheses, including viral meningitis. Metarulc 2 fails because a

binding for $finding cannot be found in the relation evidence.for. Other clauses establish

bindings for $hypothesisl and $hypothesis2 in this inetartile. Using information regarding

the range of permissible valuevs for $findling, the learning critic conjectures the two bindings

for evidence.for shown at the beginning of the example.

CHAPTER 5

EVALUATING REPAIRS

TO A KNOWLEDGE BASE

Th, last of the three stages of apprenticeship learning is evaluation of suggested

knowledge base repairs. The method we propose for apprenticeship learning is radically

different from previous evaluating approaches. It involves the use of a confirmation theory

that specifies how to determine the value or desirability of an arbitrary candidate of

domain knowledge, i.e., an arbitrary tuple. The confirmation theory justifies EDB tuples

using several knowledge sources, including an underlying theory of the domain.

Validation standard Learning program ezamples

Accuracy META-DENDRAL, INDUCE, SEEK2

Efficiency or accuracy Samuel, Genetic Alg., LEX, RL

Oracle - human TEIRESIAS. MORE,

GUIDON-DEBUG, AM

Underlying domain theory LEAP, ODYSSEUS

Table 5.1: Methods of evaluating knowledge base repairs used by learn-
ing programs.

55

56

5.1 Spectrum of Techniques for Evaluating Repairs

The number of ways to evaluate a proposed knowledge base repair is not that large;

the commonly used methods are summarized in Table 5. For algorithmic and deductive

learning methods, such as version spaces, no validation is required: the learning method

is guaranteed to give the correct solution.

The most common means used by other researchers is to measure the improvement

to the performance element, which accords well with those who believe in the performance

model of learning shown in Figure 1.3.

A less exciting but perfectly fine metho,_ is to ask an expert to evaluate the proposed

repair.

Finally, there is the method of using an underlying domain theory. That is, given a

candidate piece of knowledge, an underlying domain theory can be used to verify whether

the knowledge is true or false. This is not the same as using domain theories as 'half-

order' theories to guide the search for knowledge base improvements, as was done in

META-DENDRAL and SIERRA (Lindsay et al., 1980; VanLehn, 1983).

5.2 The Confirmation Theory

The confirmation theory provides a decision procedure for each relation in the

knowledge base. Given an arbitrary tuple, it decides whether adding that tuple to the

knowledge base would improve the knowledge base. An example of an input to the con-

firmation theory is the tuple subsumes(visual-problems, double-vision). Our decision pro-

cedures may refer to the existing knowledge base in forming their evaluation of a tuple.

As . underlying domain theory, our decision procedures use an induction system that

operates over a library of past solved cases, along with an explanation generator that

57

operates over HERACLES strategy knowledge of tasks and metarules.

5.2.1 Knowledge- vs. Performance-oriented Validation

The ultimate goal of a learning program is to improve the performance of a prob-

lem solver or performance element. However, the architecture of knowledge based systems

requires a shift in our concept of improved performance. We refer to the type of valida-

tion technique we advocate as knowledge-oriented validation and distinguish it from the

traditional practice of performance-oriented validation.

Performance i Performance I Performance
Element 1 Element 2 Element n

Use-Independent Object-Level
Knowledge Base

Figure 5.1: A use-independent knowledge base provides object-level
knowledge to nmltiple performance elements, and this complicates eval-
uation of knowledge base repairs. Our solution approach involves the
use of a confirmation theory for evaluating repairs.

Performance-oriented validation requires that modifications to a particular problem-

solving program improve problem-solving performance. Because this type of validation has

traditionally focused on improved performance with respect to a single problem-solving

program, the veracity of the underlying knowledge has not been of overriding concern.

A system designed exclusively to maximfize problem-solving performance of a particular

problem-solving program may use a method of knowledge representation in which the

58

semantics of the domain knowledge cannot be represented easily, if at all. A polynomial

evaluation function for rating checker positions, for example, does not capture all the

meaning of its terms.

Universe of Universe of
true tuples and rules false tuples and rules

Changes to the knowledge base
that improve the performance element

Figure 5.2: With a use-independent knowledge base, knowledge should
not be added to a knowledge base just because it it true, nor just be-
cause it improves performance. Ideally, we would would like both these
conditions to be true.

Knowledge-oriented validation might be defined as performance-oriented validation

that prohibits lessening the quality "f individual pieces of knowledge elements solely for

the sake of problem-solving performance. The advent of large declarative knowledge bases

used by multiple problem solving programs makes this perspective important. Examples

of multiple problem-solving program that might use the same medical knowledge base

are programs to accomplish medical diagnosis. knowledge acquisition, intelligent tutoring,

and explanation. When multiple programs use the same declaratively-specified knowledge

base, it is helpful to specify knowledge in a manner that is independent, so far as possible,

of its use. Knowledge-based validation accomplishes tis by requiring that changes to the

knowledge base be semantically meaningful.

59

Suppose we wish to be faithful to the traditional performance-oriented validation

paradigm when using multiple-purpose knowledge bases. This requires that every time

a learning program finds a change to the knowledge base that will improve one problem

solving program, before that change can be recorded, the validation method must insure

that the aggregate performance of all programs is improved. This policy will be expensive

and computationally overwhelming. Further, programs for all the intended uses of a

knowledge base are not necessarily in existence at the time learning is taking place.

Another rationale for knowledge-oriented validation is our belief that performance

in the long term will be more correct and robust if the knowledge structures are carefully

.leveloped. Moreover, when the problem solver is a human, it is unrealistic, probably even

unwise, to attempt to replace semantically-rich knowledge structures with others that

deviate radically from them merely to improve short-term performance.

It should be noted that to some extent all programs for improving an intelligent

agent aim at both good performance and good knowledge; nevertheless, almost all past

research in machine learning, intelligent tutoring and automatic programming has adopted

a pure performance-oriented validation approach. This is especially true in automatic pro-

granmfing, where any mutation to the program to be debugged is judged to be acceptable

if it causes the program to produce the correct output when given a correct input/output

training instance (Shapiro, 1983a).

5.2.2 Examples of Using a Confirmation Theory

In the remainder of this section, two learning examples will be described in detail

to demonstrate the approach we are advocating. The first example, given in Section

5.2.3, illustrates the learning of tuples for the EDB relation clarifying.questions, using the

ODYSSEUS strategy theory as the underlying domain theory. The second example, given

60

in Section 5.2.4, illustrates the learning of rule knowledge for the relation evidence.for,

using a confirmation theory based on induction over past cases as the underlying domain

theory. These examples are based on the NEOMYCIN knowledge base, the MYCIN case

library, and an actual medical case. Both sections assume that a metarule failure has

occurred and that candidate repairs have been generated; they concentrate on the third

stage of learning, wherein candidate repairs are tested.

5.2.3 Confirmation Theory for Factual Knowledge

The focus of this example is the clarifying.questions clause in the clarifying.questions

ijetarule presented below. As an example of its use, suppose the doctor discovers that

the patient has a headache. The headache finding is associated with many diagnostic

hypotheses, so many that it is generally wise to narrow down this set of hypotheses by de-

ternining the severity and duration of the headache before pursuing a specific hypothesis.

This is the process of clarifying the finding, and the questions about various subtypes of

this finding (e.g., headache-duration, headache-severity) are called clarifying questions. In

the HERACLES system, this is implemented by invoking the clarify.finding task whenever

a new finding is derived by the system or provided by the user. In turn, the c'arify.finding

task invokes the clarifying.questions metarule.

MetaRule 1: Clarify.questions

IF: goal(clarify.finding $findingl) A

clarifying.questions($findingl $finding2) A

not(value-known $finding2)

THEN: goal(findout $finding2)

61

ENGLISH: If the current goal is to clarify finding1

and finding1 can be clarified by finding2

and finding2 is currently unknown

then try to find out the value of finding2.

Only one of the premise conjuncts of Metarule 1 accesses domain knowledge, namely

clarifying.questions($findingl $finding2). The first conjunct is for control purposes and the

third conjunct checks the value of dynamic state knowledge.

Learning may occur when Metari le 1 is passed a value for the variable $findingl,

say headache, but Metarule l's premise fails because no bindings can be found for $find-

ing2. In this situation. $findingz is a free variable at the time of failure. ODYSSEUS

begins the learning process by invoking the candidate repair generator, which generates

every plausible candidate binding for $finding2. Using information regarding the range of

$finding2, the learning critic is able to generate about 300 candidate relations.

In order to be able to evaluate new domain knowledge, two steps must be taken

beforehand. First, specify all the constraints that an instance of the EDB relation must

satisfy in order to be valid. In our example, tls requires constructing a precise definition

that captures the constraints on an instance of the clarifying.questions relation. Second,

test these constraints using an underlying theory of the domain. This two-step method

contrasts with the current manual method of refining the NEOMYCIN knowledge base,

which consists of directly asking physicians for new knowledge.

Let us begin by giving an informal justification of clarifying.questions. One rea-

sonable justification for asking clarifying questions is cognitive economy with respect to

efficient diagnosis. That is, clarifying questions can reduce the number of questions that

a physician must ask in order to arrive at the correct diagnosis. Much of diagnosis in-

volves the testing of specific hypotheses; however, sometimes a new piece of information is

62

discovered that suggests a very large number of hypotheses. To reduce the number of rel-

evant hypotheses, it is helpful to ask several clarifying questions that will add confirming

or disconfirming evidence to many of the hypotheses associated with the new piece of in-

formation. After asking these questions, only a few of the numerous potential hypotheses

will now be consistent with what is known.

We can now give a precise description of the constraints operating on clarifying.ques-

tions. An explicit description of a clarifying question is -s follows: if a question (finding)

is associated with many hypotheses, say more than six, and there exists a question that

provides positive or negative evidence to many of these hypotheses, say between one-

third and two-thirds, then always ask this question as a clarifying question. This can be

formalized as follows.

Definition 1.

For any finding f, let Hf be the set of all hypotheses h such that relatesTo(f, h)

is true. Let fi and f2 be distinct findings, such that subsumes(fi, f2) is in the knowleige

base. Let n be an empirically determined threshold indicating the ninimum number of

hypotheses that a finding must relate to in order to require the use of clarifying questions.

Then

clarifying.question(fl, f2) --

1 2
[(IH 1 n) A (-n < IIHf, n H 1:I < n)].

3 3

The relatesTo() relation is not part of the domain knowledge base; it is computed on

the fly when a new piece of knowledge is evaluated, using the ODYSSEUS LORE generator

described in detail in Chapter 3. The LORE generator can enumerate all the reasons

that a question could possibly be asked, given the strategy and domain knowledge in

HERACLES. The line of reasoning generator allows determination of all the hypotheses

63

that are associated with any one question either directly or indirectly; it is used to compute

relatesTo(f, h).

We now describe the results of encoding Definition 1 and implementing our ap-

proach for the NEOMYCIN knowledge base. Currently, there are two clarifying questions

for headache in the NEOMYCIN knowledge base: headache duration and headache severity.

ODYSSEUS considered the effect of all headache-related questions on the set of hypothe-

ses associated with headaches, and determined that one more clarifying question met the

above described constraints: headache progression (i.e., is the headache getting better or

worse). ODYSSEUS automatically modified a slot value under headache in the knowledge

base to include this clarifying question; in the future, this question will always be asked

when the patient complains of a headache.

5.2.4 Confirmation Theory for Rule Knowledge

All rule knowledge is represented within HERACLES using EDB and IDB relations.

This means that rules can be learned much as factual knowledge is learned. The example in

this section involves learning a tuple of the evidence.for relation through the split.active.hyp-

otheses metarule. This rule is one of three invoked by the task group.and.differentiate.hyp-

otheses. This metarule is useful during diagnosis when there are currently a large number

of strong diagnostic hypotheses. The split.active.hypotheses metarule searches for a data

request to ask that will simultaneously provide strong positive evidence for some active

hypotheses and strong negative evidence against other active hypotheses.

MetaRule 2: Split.Active.Hypotheses

IF: goal(group.and.diff.hypotheses $active.hypotheses) A

member($hypothesisl $active.hypotheses) A

member($hypothesis2 $active.hypotheses) A

64

not(equal($hypothesisl $hypothesis2)) A

evidence.for($finding $hypothesisl $rulel $cfl) A

evidence.for($finding $hypothesis2 $rule2 $cf2) A

greater($cfl .2) A

less($cf2 -.2)

THEN: goal(findout Sfinding)

ENGLISH: If the current goal is to group and differentiate a

list of active hypotheses and a single finding provides

positive evidence for one of the hypotheses and

negative evidence for another of the hypotheses

then try to find out the value of this finding.

The metarule is passed a value for the variable $active.hypotheses. The interpreter

attempts to find a unifier for all the clauses such that $hypothesisl is bound to one member

in $active.hypotheses, $hypothesis2 is bound to a different member of $active.hypotheses,

and there is a single finding in the premise of a metarule that concludes that $hypothesisl

is probably present and is also in the premise of a rule that concludes that Shypothesis2 is

probably absent. That is, a finding is asked that simultaneously provides evidence against

some of the hypotheses and evidence for other hypotheses. Even though the NEOMYCIN

knowledge base has bten under development for several years, the split.active.hypotheses

metarule is rarely invoked on any of the patient cases in the NEOMYCIN case library.

In the example that our learning critic was called into play, $active.hypotheses

consisted of seven hypotheses: AV malformation, mycobacterium TB meningitis, viral

meningitis, acute bacterial meningitis, brain aneurysm, partially treated bacterial menin-

65

gitis, fungal meningitis. The metarule fails because a binding for $finding cannot be found

in the two relations positive.evidence.for and negative.evidence.for. Other clauses establish

bindings for $hypothesisl and $hypothesis2. Using information regarding the domain of

$finding, ODYSSEUS conjectures many potential missing rules. The number of conjectures

can be quite large.

Given these conjectures, a confirmation theory determines whether any of them is

true. This requires the use of a decision procedure for the $evidence.for relation based on

an underlying domain theory.

Definition 2.

Let r be a justifiable domain rule. Let f be a finding that appears in the premise

of r, and let h be a hypothesis that appears in the conclusion of r. Let s be the certainty

factor strength of r that indicates the evidence of f for h, normalized to lie between +1

and -1. Let there exist predicates general, specific, complex, and collinear, that return

true if the rule is, respectively, sufficiently general, sufficiently specific, above a complex

threshold, and a collinear version of an existing rule in thi. knowledge base. Then

evidence.for(f, h, r, s)

general(r) A specific(r) A - complez(r) A -, collinear(r).

ODYSSEUS uses induction over a case library to determine whether the conjectured

rule meets the constraints of the definition. A statistical analysis of the past solved cases

determines whether a rule is sufficiently general and nufficiently specific. An analysis of

the existing knowledge base determines whether a rule is a collinear version of an existing

rule. The rule complexity is measured by the number of conjunctions the rule contains.

66

The confirmation theory using the ODYSSEUS induction system found five rules

that divide the list of active hypotheses, including:

Object-Level Rule 1.

IF: duration.of.symptoms < 1 day A

evidence.for(meningitis) > .6

THEN: suggests fungal.meningitis (c:= -.8) A

suggests mycobacterium.tb.meningitis (cf = -.8) A

suggests acute.bacterial.meningitis (cf = .7)

5.3 The Underlying Domain Theory

5.3.1 Odysseus' Induction System

The induction subsystem of ODYSSEUS serves as an underlying basis for the 20% of

the knowledge base that consists of heuristic associational rules. The induction subsystem

of ODYSSEUS is principally concerned with searching the space of rules of the form lhs

hypothesis (CF), where CF is a MYCIN-type certainty factor. A candidate rule evaluator

checks the 1hs of candidate rules to see whether they meet given constraints of minimal rule

generality (coverage), inimal rule specificity (discrimination), maximal rule collinearity

(similarity), and maximal rule simplicity (number of conjunctions and disjunctions). The

rule evaluator always gives preference to collinear forms of heuristic rules contained in the

original rule base.

Some EDB relations may not be justifiable using empirical methods that operate

over a set of past solved problems.

67

5.3.2 Related Research

Two major apprenti,-eship learning systems are LEAP and DIPMETER ADVISOR

(Mitchell et al., 1985; Smith et al., 1985). In both of these systems there is a single type

of knowledge. In LEAP, all knowledge is iipl .nentation rules. Il DIPMETER ADVISOR

all knowledge is heuristic rules. In contrast, there are dozens of types of knowledge in

IHERACLES--eactt EDB relation corresponds to a different type of knowledge. The key to

automatic learning seems to be the definition of constraints to tie each relation individually

to an underlying domain theory. The DIPMETER ADVISOR uses explicit justifications that

are tailored for each heuristic rule. By contrast a single confirmation theory is used by

ODYSSEUS to provide an explicit justification for all heuristic rules. 'he DIPMETER

ADVISOR provides an example of the use of very complex rule justifications for heuristic

rules.

ODYSSEUS has a separate decision procedure for each EDB relation. This is remni-

niscent of the approach taken in in AM (Lenat, 1976), where each slot of a concept has a

set of associated heuristic rules that can be used to evaluate the contents of the slot.

5.4 Example of Evaluating Repairs

Returning to the example that was described in Chapters 1 and 4, the canflidate

repair evidence.for(photophobia acute-meningitis $rule $cf) is submitted to the repair evalu-

at ion subsystem. The induction systeril finds a good rule the includes photophobia in the

premise and acute-meningitis in the conclusion, as documented in the following transcript.

Second candidate selected.

A good rule corresponding to the evidencefor is:

IF patient-finding(photophobia yes)

68

THEN conclude(acute-meningitis .7)

Rule goodness measures:

Rule generality: .22

Rule specificity: .76

Rule collinearity: .06

Rule simplicity: 1

The explanation that this completes is as follows:

IF conclude(visual-problems no)

THEN conclude(photophobia no) by subsumption.

IF conclude(photophobia no)

THEN conclude(acute-meningitis no .7)

via a heuristic associational rule

IF conclude(acute-meningitis no .7)

THEN conclude(viral-meningitis .5)

since acute is a sub-type of viral-meningitis.

Viral-meningitis is on the differential.

(i.e. prior information has activated

viral-meningitis as a potential hypothesis.)

The suggested modification completes this explanation.

The following rule automatically generated and linked into the Neorr ,cin knowledge

base, along with the corresponding set of clauses that includes the relation

evidence.for(photophobia acute.meningitis rulel .7).

69

Object-Level Rule 1.

I F: patient.finding(photophobia yes)

THEN: conclude(acute. meningitis (cf =.7)

CHAPTER 6

INHERENT LIMITS OF LEARNING

Ideally, in the limit, an apprenticeship learning technique should create a perfect

:,r optimal performance element. The knowledge base should reach a state where it is the

best possible knowledge base for its associated performance element. At the very least, im-

provements to the knowledge base should lead to better problem-solving performance. In

no case should performance be worsened by additional knowledge learned in an apprentice-

ship setting. Unfortunately, changes made to a knowledge base by an apprentice learning

program do not always lead to better performance. This problem may be characteristic

of most existing knowledge bases. This chapter describes some inherent limitations to im-

proving a knowledge base via apprenticeship learning, and a non-apprenticeship approach

that circumvents these limitations.

This chapter shows that interactive debugging techniques, which subsume appren-

ticeship learning techniques, are inherently inadequate for improving a large class of knowl-

edge bases. These are denoted as sociopathic knowledge bases and they share the property

that 'better' knowledge does not necessarily lead to a 'better' knowledge base. That is,

problem-solving performance can deteriorate when additional good knowledge is added to

a knowle 1ge base. This chapter explains the nature of the inherent limits to debugging

70

71

such knowledge bases.

In Section 6.1 the concept of a sociopathic knowledge base is defined and shown

to encompass many existing knowledge bases. In Section 6.2, interactive debugging tech-

niques are shown to be inadequate for debugging such a knowledge base. In Section 6.3,

the problem of reducing sociopathicity is formalized and an exact solution method is shown

to be NP-Complete. A heuristic sociopathic reduction algorithm is then presented and

experimental results of the algorithm are described.

6.1 Sociopathic Knowledge Bases

Definition 6.1 Let Perf(PS) be a performance metric for evaluating the accu-

racy of problem-solving performance. An EDB is sociopathic iff

1. All tuples in the EDB are correct.

2. EKB' C KB I Perf(PS(KB')) > PerIf(PS(KB)).

The EDB excludes facts that can be derived using rules of inference from tuples

encoded in the EDB. An assumption is made that it is possible to determine whether each

tuple is correct either by asking an expert or using an underlying theory of the domain as

described in Chapter 5.

The idea of non-monotonic reasoning is similar to but different from the sociopathic-

ity property. In non-monotonic reasoning, the addition of new facts to the knowledge base

may invalidate conclusions reached using the knowledge base. In a sociopathic knowledge

Last, it is problem-solving performance that is non-monotonic with the addition of new

facts.

72

Consider knowledge bases that contain probabilistic rules such as MYCIN-type CFs.

A knowledge base that contains these types of rules will be a sociopathic knowledge base.

This is because heuristic inference rules with a measure of strength less than certainty have

an unusual property: better individual rules do not necessarily lead to a better overall rule

set. All less- than-certain zales contrib't,,.e tvidence tow-uds erroneous conclusions for some

problem instances, and the distribution of these erroneous conclusions over the instances

is not necessarily related to individual rule quality. This has important consequences for

automatic machine learning cf rules, since rule selection is usually based on measures of

quality of individual rules.

An obvious and intuitively reasonable solution to this problem, incremental niodifi-

cation and deletion of rules responsible for wrong conclusions a la Teiresias, is not always

appropriate. In empirical ODYSSEUS experiments, it failed to converge to an optimal

set of rules. Given a set of heuristic rules, the best rule set should be considered to be

the element of the power set of rules that yields a global mininmum error with respect to

generating erroneous positive and negative conclusions. In this chapter, this selection pro-

cess is modeled as a bipartite graph minimization problem and shown to be NP-complete.

A solution method is described, the Sociopathic Reduction Algorithm, that performs a

model-directed search of the rule space. On an example from medical diagnosis, the So-

ciopathic Reduction Algorithm significantly reduced the number of misdiagnoses when

applied to a rule set generated from 104 training instances.

6.1.1 Reasoning Under Uncertainty

Reasoning under uncertainty has been widely investigated in artificial intelligence.

Probabilistic approaches are of particular relevance to rule-based expert systems, where

one is interested in modeling the heuristic and evidential reasoning of experts. Methods

73

developed to represent and draw inferences under uncertainty include the certainty factors

used in MYCIN (Buchanan and Shortliffe, 1984), fuzzy set theory (Zadeh, 1979), and the

belief functions of Dempster-Shafer theory (Shafer, 1976) (Gordon and Shortliffe, 1985).

In many expert system frameworks, such as EMYCIN, EXPERT, MRS, S.i and KEE, the

rule structure permits a conclusion to be drawn with varying degrees of certainty or belief.

This chapter addresses a concern common to all these methods and systems.

In refining and debugging a probabilistic rule set, there are three major causes of

errors: missing rules, wrong rules, and deleterious interactions between good rules. The

purpose of this chapter is to explicate a type of deleterious interaction and to show that it

(a) is indigenous to rule sets for reasoning under uncertainty, (b) is of a fundamentally dif-

ferent nature from missing and wrong rules, (c) cannot be handled by traditional methods

for correcting wrong and missing rules, and (d) can be handled by the method described

in this chapter. The method provides a way of compensating for the inherent limitations

of apprenticeship learning.

Section 6.2 describes the type of deleterious rule interactions that have been encoun-

tered in connection with automatic induction of rule sets using ODYSSEUS, and explain

why the use of most rule modification methods fails to grasp the nature of the problem.

Section 6.3 discusses approaches to debugging and reffining rule sets and explain why tra-

ditional rule set debugging methods are inadequate for handling global interactions. Sec-

tion 6.4 formulates the problem of reducing deleterious interactions as a bipartite graph

minimization problem and show that it is NP-complete. Section 6.5 presents a heuristic

solution method called the Sociopathic Reduction Algorithm. Finally, experiences in using

the Sociopathic Reduction Algorithm are described.

A brief description of terminology will be helpful to the reader. Assume there

exists a collection of training instances, each represented as a set of feature-value pairs

74

of evidence and a set of hypotheses. Rules have the form LHS - RHS (CF) , where

LHS is a conjunction of evidence, RHS is a hypothesis, and CF is a certainty factor or its

equivalent. A rule that correctly confirms a hypothesis generates true positive evidence;

one that correctly disconfirms a hypothesis generates true negative evidence. A rule that

incorrectly confirms a hypothesis generates false positive evidence; one that incorrectly

disconfirms a hypothesis generates false negative evidence. False positive and false negative

evidence can lead to misdiagnoses of training instances.

6.1.2 Inexact Reasoning and Rule Interactions

When operating as an evidence-gathering system (Buchanan and Shortliffe, 1984),

an expert system accumulates evidence for and against competing hypotheses. Each rule

whose preconditions match the gathered data contributes either positively or negatively

toward one or more hypotheses. Unavoidably, the preconditions of probabilistic rules

succeed on instances where the rule will be contributing false positive or false negative

evidence for conclusions. For example, consider the following rule:1

finding(surgery, yes) A (R1)

hyp thesis(gram-neg-infection,yes) -.

conclude(klebsiella, yes, 0.77)

The frequency with which R1 generates false po-sitive evidence has a major influence

on its CF of 0.77, where -1 < CF < 1. Indeed, given a set of training instances, such

as a library of medical cases, the certainty factor of a rule can be given a probabilistic

interpretation 2 as a function '(X X, x3), where x, is the fraction of the positive instances

This is a simplified form of (($And (Same Cntxt Surgery))

(Conclude Cntxt Gram-NegativeInfection Klebsiella Tally 770)).
2 See Appendix D for a description of the function 4. This statistical interpretation of CFs

deemphasizes incorporating orthogonal utility measures as discussed in (Buchanan and Shortliffe,

75

of a hypothesis where the rule premise succeeds, thus contributing true positive or false

negative evidence; X 2 is the fraction of the negative instances of a hypothesis where the

rule premise succeeds, thus contributing false positive or true negative evidence; and z 3 is

the ratio of positive instances of a hypothesis to all instances in the training set. For Ri

in the MYCIN domain, 4(.43, .10, .22) = 0.77, because statistics on 104 training instances 3

yield the following values:

z: LHS true among positive instances 23

X2: LHS true among negative instances =8

z 3 : RHS true among all instances = 23- 104

Hence, RI generates false positive evidence on eight instances, some of which may

lead to false negative diagnoses. But whether they do or not depends on the other rules

in the system; hence the emphasis on taking a global perspective. The usual method of

dealing with situations such as this is to make the rule fail less often by specializing its

premise (Michalski, 1983). For example, surgery could be specialized to neurosurgery, and

Ri could be replaced with:

finding(neurosurger' yes) A (R2)

hypothesis(gram neg-infection, yes) --

conclude(klebsiella, Yes, 0.92)

On the case library of training instances for the R2 rule, 4 (.26, .02, .22) = 0.92, so

R2 makes erroneous inferences in two instances instead of eight. Nevertheless, modifying

1984).
. This chapter uses the MYCIN case library of 104 cases, and was written before the

NEOMYCIN case library of 114 cases that is described in other chapters was constructed.
These vocabulary of data requests and diseases in these two libraries is different.

76

R1 to be R2 on the grounds that Ri contributes to a nisdiagnosis is not always appro-

priate; there are three objections to this frequent practice. First, both rules are inexact

rules that offer advice in the face of limited information, and their relative accuracy and

correctness is explicitly represented by their respective CFs. They are expected to fail,

hence failure should not necessarily lead to their modification. Second, all probabilistic

rules reflect a trade-off between generality and specificity. An overly general rule provides

too little discriminatory power, and an overly specific rule contributes too infrequently to

problem solving. A policy on proper grain size is explicitly or implicitly built into rule

induction programs; this policy should be followed as much as possible. Specialization

produces a rule that usually violates such a policy. Third, if the underlying problem for

an incorrect diagnosis is rule interactions, a more specialized rule, such as the specializa-

tion of RI to R2, can be viewed as creating a potentially more dangerous rule. Although

it only makes an incorrect inference in two instead of eight instances, these two instances

will be now harder to counteract when they contribute to misdiagnoses because R2 is

stronger. Note that a rule with a large CF is more likely to have its erroneous conclusions

lead to misdiagnoses. This perspective motivates the prevention of misdiagnoses in ways

other than the use of rule specialization or generalization.

Besides rule modification, another way of nullifying the incorrect inference of a

rule in an evidence-gathering system is to introduce counteracting rules. In the example,

this would be rules with a negative CF that concludes Klebsiella on the false positive

training instances that lead to nisdiagnoses. But since these new rules are probabilistic,

they introduce false negatives on, some other training instances, and these may lead to

riisdiagnoses. Still more counteracting rules could be added with with a positive CF to

nullify any problems caused by the original counteracting rules, but these rules introduce

false positives on yet other training instances, and these may lead to other misdiagnoses.

77

Clearly, adding counteracting rules may not be necessarily the best way of dealing with

nisdiagnoses made by probabilistic rules.

6.2 Debugging Sociopathic Knowledge Bases

Assume the existence of a set of probabilistic rules that were either automatically

induced from a set of training cases or created manually by an exp¢;t and knowledge

engineer. In refuiing and debugging this probabilistic rule set, there are three major

causes of errors: missing rules, wrong rules, and unexpected interactions among good

rules. The types of rule interactions are first described, and then it is shown how the

traditional approach to debugging is inadequate.

6.2.1 Types of Rule Interactions

There are many types of :-ule interactions in a rule-based system. Rules interact by

chaining together, by using the same evidence for different conclusions, and by drawing the

same conclusions from different collections of evidence. Thus one of thc lessons learned

from research on MYCIN(Buchanan and Shortliffe, 1984) was that complete modularity

of rules is not possible to achieve when rules are written manually. An expert uses other

rules in a set of closely interacting rules in order to define a new rule, in particular to set

a CF value relative to the CTs of interacting rules.

Automatic rule induction systems encounter the same problems. Moreover, auto-

niatic systems lack an understanding of the strong semantic relationships among concepts

to allow .iudgments about the relative strengths of evidential support. Instead, induction

systems use biases to guide the rule search (Itgoff, 1986; Michalski, 1983) Examples of

some biases used by the induction subsystem of the ODYSSEUS apprenticeship learning

program are rule generality, whereby a rule must cover a certain percentage of instances;

78

rule specificity, whereby a rule must be above a minimum discrimination threshold; rule

colinearity, whereby rules must not be too similar in classification of the instances in the

training set; and rule simplicity, whereby a maximum bound is placed on the number of

conjunctions and disjunctions (Wilkins et al., 1986).

6.2.2 Traditional Methods of Debugging a Rule Set

The standard approach to debuggir - a rule set consists of iteratively performing

the following steps:

e Step 1. Run the system on cases until a false diagnosis is made.

* Step 2. Track down the error and correct it, using one of five methods pioneered by

TEIRESIAS (Davis, 1982) and used by knowledge engineers generally:

- Method 1: Make the preconditions of the offending rules more specific or some-

times more general. 4

- Method 2: Make the conclusions of offending rules more general or sometimes

more specific.

- Method 3: Delete offending rules.

- Method 4: Add new rules that counteract the effects of offending rules.

- Method 5: Modify the strengths or CFs of offending rules.

This approach may be sufficient for correcting wrong and missing rules. However,

it is flawed from a theoretical point of view, with respect to its sufficiency for correcting

problems resulting from the global behavior of rules ever a set of cases. It possesses two

' Ways of generalizing and specializing rules are nicely described in (Michalski, 1983). They
include dropping conditions, changing constants to variables, generalizing by internal disjunction,
tree climbing, interval closing, exception introduction, etc.

79

serious methodological problems. First, using all five of these methods is not necessarily

appropriate for dealing with global deleterious interactions. Section 6.2 explained why

in some situations modifying the offending rule or adding counteracting rules leads to

problems, and misses the point of having probabilistic rules, and this eliminates methods

1, 2 and 4. If rules are being induced from a training set of cases, modifying the strength

of the rule is illegal, since the strength of the rule has a probabilistic interpretation,

being derived from frequency information derived from the training instances, and this

eliminates method 5. Only method 3 is left to cope with deleterious interactions. The

second methodological problem is that the traditional method picks an arbitrary case to

run in its search for misdiagnoses. Such a procedure will often not converge to a good

rule sct, even if modifications are restricted to rule deletion. Example 1 in Section 6.3.3

illustrates this situation.

The perspective on this topic that is presented here evolved in the course of

ODYSSEUS experiments in induction and refinement of knowledge bases. Using 'bet-

ter' induction biases did not always produce rule sets with better performance, and this

prompted investigating the possibility of global probabilistic interactions. The original

ODYSSEUS approach to debugging was sinilar to the TEIRESIAS approach. But often,

correcting a problem led to other cases being mnisdiagnosed, at d in fact this type of au-

tunated incremental debugging seldom converged to an acceptable set of rules. It might

have if the common practice of 'tweaking' the CF strengths of rules was used. However

this was not permissible, since our CF values have a precise probabilistic interpretation.

6.3 Minimizing Sociopathic Interactions

Assume there exists a large set of training instances, and a rule set for solving

these instances has been created manually or by induction that is fairly complete and

80

contains rules that are individually judged to be good. By good, is meant that they

individually meet some predefined quality standards such as the biases described in Section

6.1. Further, assume that the rule set inisdiagnoses some of the instances in the training

set. Given such an initial rule set, the problem is to find a rule set that meets some

optimality criteria, such as to minimize the number of misdiagnoses without violating the

goodness constraints on individual rules. 5 Now modifications to rules, except for rule

deletion, generally break the predefined goodness constraints. And adding other rules is

not necessarily desirable, for if they satisfied the goodness constraints they would have been

in the original rule set produced, especially of the rule set was produced by an induction

program. Hence, if a solution is to be found that meets the described constraints, the

solution must be a subset of the original rule set.6

The best rule set is the element of the power set of rules in the initial rule set that

yields a global minimum weighted error. A straightforward approach is to examine and

compare all subsets of the rule set. However, the power set is almost always too large to

work with, especially when the initial set has deliberately been generously generated. The

selection process can be modeled as a bipartite graph minimization problem as follows.

6.3.1 Bipartite Graph Minimization Formulation

For each hypothesis in the set of training instances, define a directed graph G(V, A),

with its vertices V partitioned into two sets I and R, as shown in Figure 6.3.1. Elements

of R represent rules, and the evidential strength of Rj is denoted by 4Ij. Each vertex in

I represents a training instance; for positive instances Ti, is 1, and for negative instances

In META-DENDRAL, a large initial rule set was created b3 the RULEGEN program,
which produced plausible individual rules without regard to how the rules worked together. The
RULEMOD program selected and refined a subset of the rules. See (Buchanan and Mitchell,
1978) for details.

6 If it is discovered that this solution is inadequate, then introducing rules that violate the

induction biases is justifiable.

81

%ki is -1. Arcs [Rj,Ii] connect a rule in R with the training instances in I for which its

preconditions are satisfied; the weight of arc [Rj, Ii] is 4j. The weighted arcs terminating

in a vertex in I are combined using an evidence combination function 1', which is defined

by the user. The combined evidence classifies an instance as a positive instance if the

combined evidence is above a user specified threshold CFt. In the example in section 6.1,

CFt is 0, while for MYCIN. CFt is 0.2.

More formally, assume that I 1 ,..., I= training set of instances, and R1 , ..., R, =

rules of an initial rule set. Then the function to be minimized is:

n

z = Zbjrj
j=l

subject to the constraints

A (s' (aiiri,. .. I air)0 CFt)i=1

n

Ernj _ Rmin

where

rj =if Rj is in solution rule set then 1 else 0;

bj= bias constant to preferentially favor rules;

aid = if arc [Rj, Ii] exists then 4', else 0;

CFt = the CF threshold for positive classification;

Ii' = n-ary function for combining CFs, where

the time to evaluate is polynomial in n;

Rmi, = minimum number of rules in solution set;

if 'Pi is 1 then " > " else " < "

82

The solution formulation solves for rj; if rj = 1 then rule Rj is in the final rule

set. The main task of the user is setting up the aij matrix, which associates rules and

instances and indicates the strength of the the associations. Note that the value of aij

is zero if the preconditions of Rj are not satisfied in instance Ii Preference can be given

to particular rules via the bias bj in the objective function z. For instance, the user may

wish to favor the selection of strong rules. The Rmtn constraint forces the solution rule

set to be above a minimum size. This prevents finding a solution that is too specialized

for the training set, giving good accuracy on the training set but having a high variance

on other sets, which would lead to poor performance.

Theorem 1. The bipartite graph minimization problem for heuristic rule set

optimization is NP-complete.

Proof. To show that the bipartite graph minimization problem is NP-complete,

reduction from Satisfiability is used. Satisfiability clauses are mapped into graph instance

nodes and the atoms of the clauses are mapped into rule nodes. Arcs connect rule nodes to

instance nodes when the respective literals appear in the respective clauses. The evidence

combination function ensures that at least one arc goes into each clause node from a

rule node representing a true literal. The evidence combination function also performs

bookkeeping functions. >

6.3.2 Sociopathic Reduction Algorithm

In this section, a solution method called the Sociopathic Reduction Algorithm is

described, and an example is provided based on the graph shown in Figure 6.3.3. An

alternative solution method uses zero-one integer programming. It is more robust, but

places a restriction on the evidence combination function, namely that the evidence be

additively combined. It is not adequate when using the certainty factor model, but may

83

Instance Set Rule Set

Ii ('i) 0 R1

12 (0:)R 2 (42)

Im(' 'm) * • RH (4[n)

Figure 6.1: Bipartite graph formulation of sociopathic interactions. The
instance set contains a set of problem descriptions. The rule set contains
the rules in the knowledge base. The arcs show wbhiich rules apply to
which cases. All arcs emanating from a rule node have the same weight,
namely, 4 .

be suitable for connectionist approaches.

The following model-directed search method, the Sociopathic Reduction Algorithm,

is one that has been developed and used in ODYSSEUS experiments:

s Step 1. Assign values to penalty constants. Let p1 be the penalty assigned to a poison

rule. A poison rule is a strong rule giving erroneous evidence for a case that cannot

be counteracted by the combined weight of all the rules that give correct evidence.

Let P2 be the penalty for contributing false positive evidence to a misdiagnosed case,

p3 be the penalty for contributing false negative evidence to a misdiagnosed case, p4

be the penalty for contributing false positive evidence to a correctly diagnosed case,

ps be the penalty for contributing false negative evidence to a correctly diagnosed

case, and p6 be the penalty for using weak rules. Let h be the maximum number

of rules that are removed at each iteration. Let Rmi, be the mininmum size of the

84

solution rule set.

" Step 2. Optional step for very large rule sets: given an initial rule set, create a new

rule set containing the n strongest rules for each case.

" Step 3. Find all misdiagnosed cases for the rule set. Then collect and rank the rules

that contribute evidence toward these erroneous diagnoses. The rank of rule Rj is

E4=j pinij, where:

-nli = 1 if Rj is a poison rule or its deletion leads to the creation of another

poison rule and 0 otherwise.

- n2= the number of misdiagnoses for which Rj gives false positive evidence;

- n3, = the number of misdiagnoses for which Rj gives false negative evidence;

- n4i the number of correct diagnoses for which Rj gives false positive evidence;

- n = the number of correct diagnoses for which Rj gives false negative evidence;

- n6j the absolute value of the CF of Rj;

" Step 4. Eliminate the h highest ranking rules.

" Step 5. If the number of misdiagnoses begins to increase and h 4 1, then h +- h - 1.

Repeat steps 3-4 until either

- there are no misdiagnoses

- Rmin is reached

- h = 1 and the number of misdiagnoses begins to increase. 0

Each iteration of the algorithm produces a new rule set, and each rule set must be

rerun on all training instances to locate the new set of misdiagnosed instances. If this is

particularly difficult to do, the h parameter in step 4 can be increased, but there is the

85

potential risk of converging to a suboptimal solution. For each misdiagnosed instance,

the automated reasoning system that uses the rule set must be able to explain which

rules contributed to a misdiagnosis. Hence, a system with good explanation capabilities

is desirable.

The nature of an optimal rule set differs between domains. Penalty constants, pi,

are the means by which the user can define an optimal policy. For instance, via P2 and

p3 , the user can favor false positive over false negative misdiagnoses, or visa versa. For

medical expert systems, a false negative is often more damaging than a false positive, as

false positives generated by a medical program can often be caught by a physician upon

further testing. False negatives, however, may be sent home, never to be seen again.

In ODYSSEUS experiments, the value of the six penalty constants was pi = 106-'.

The h constant determines how many rules are removed on each iteration, with lower

values, especially h < 3, giving better performance. Rm,,n is the minimum size of the

solution rule set; its usefulness was described in Section 6.1.

6.3.3 Example of Sociopathic Reduction

In this example, which is illustrated in Figure 6.3.3, there are six training instances,

classified as positive or negative instances of the hypothesis. There are f$vr rules shown

4 with their CF strength. The arcs indicate the instances to which the- rules apply. To

simplify the example, define the combined evidence for an instance as the sum of the

evidence contributed by all applicable rules, and let CFt = 0 Rules with a CF of one sign

that are connected to an instance of the other sign coiktribute erroneous evidence. Two

cases in the example are misdiagnosed: 14 and 15. mie objective is to f "d a subset of the

rule set that minimizes the number of misdiagnoses.

Azujine that the final ruleset mu-c have at least three rules, hence R,, = 3. Since

86

Classified Example
Instances Rule Set

I1 (+1) - - R1 (+.5)

12 (-1) R 2 (+.5)

13 (+1) - Rs (-.5)

14 (-1) - R4 (+.5)

15 (-1) / NR(-5

Figure 6.2: Example of bipartite gra-h formulation for one hypothesis.
Each problem case instance is marked as a positive or negative example
of a particular hypothesis. An arc from a rule node to an instance node
means that the rule provides either positive or negative evidence for the
hypothesis. The actual weight provided by the rule is shown next to the

rule number.

all rules have identical magnitude and out degree, it is reasonable to set the bias to the

same value for all n rules, hence bj = 1, for 1 < j < n. Let pi = 1 0 6-i, for 0 < i < 5, thus

choosing rules in the highest category, and using lower categories to break ties.

On the first iteration, two misdiagnosed instances are found, 14 and 1s, and four

rules contribute erroneous evidence toward these misdiagnoses, R2, R 3 , R 4 , and R5 . Rules

are ranked and R 4 is chosen for deletion. On the second iteration, one misdiagnosis is

found, 14, and two erroneous rules contribute erroneous evidence, R 3 and Rs. Rules are

ran!::d and R5 is deleted. This reduces the number of misdiagnoses to zero and the

algorithm successfully terminates.

The same example can be used to illustrate the problem of the traditional method of

87

rule set debugging, where the order in which cases are checked for misdiagnoses influences

which rules are deleted. Consider a TEIRESIAS style program that looks at training

instances and discovers 14 is misdiagnosed. There are two rules that contribute erroneous

evidence to this misdiagnosis, rules R 3 and R5 . It wisely notices that deleting R 5 causes

13 to become misdiagnosed, hence increasing the number of misdiagnoses; so it chooses to

delete R 3 . However, no matter which rule it now deletes, there will always be at least one

misdiagnosed case. To its credit, it reduced the number of misdiagnoses from two to one;

however, it fails to converge to an rule set that minimizes the number of misdiagnoses.

6.3.4 Experimental Results

Experiments with the Sociopathic Reduction Algorithm were performed using the

MYCIN case library(Buchanan and Shortliffe, 1984). The ODYSSEUS experiments involved

using 119 evidential findings, 26 intermediate hypotheses, and 21 final hypotheses. The

training set had 104 training instances and each instance was classified as a member of four

hypothesis classes on the average. The generated rules had one to three LHS conjuncts.

In ODYSSEUS experiments, approximately forty rule sets were generated contain-

ing between 200 and 20000 rules. Large rule sets were generated because of the interest

in investigating the construction of knowledge bases that allow an expert system to auto-

matically follow the line of reasoning of an expert; understanding a conmmunity of problem

solvers requires more knowledge than that needed to just solve diagnosis problems. Typ-

ically, 85% of the training instances were diagnosed correctly, and seven out of ten cases

used to evaluate the original MYCIN system were evaluated correctly. While ten cases is

a small number for a validation set, it is a carefully constructed set and has been found

adequate in accurately classifying human diagnosticians at all levels (Yu et al., 1979).

Further, since there are an average of four hypotheses in the diagnosis per instance, the

88

training set can be viewed as having 416 instances and our validation set as having 40

instances. After the Sociopathic Reduction Algorithm was applied, 95% of the training

instances was diagnosed correctly, and 80% of the validation set was diagnosed correctly.

Besides almost always converging to a solution in which all members of the training

set are diagnosed correctly, the Sociopathic Reduction Algorithm is very efficient. Only

eight to twelve iterations were required for rule sets created by ODYSSEUS that contained

between 500 and 1450 rules. It was surprising to see how greatly performance is improved

by deleting a small percentage of the rules in the rule set. As the results show, the

improved performance on the training set carried over to the validation set.

6.4 Summary

Traditional methods of debugging a probabilistic rule set are suited to handling

missing or wrong rules, but not to handling deleterious interactions between good rules.

The underlying reason for this phenomenon have been described. The problem of minirniz-

ing deleterious rule interactions was formalized as a bipartite graph minimization problem

and proved that it is NP-Complete. A heuristic method was described for solving the

graph problem, called the Sociopathic Reduction Algorithm. In ODYSSEUS experimeats,

the Sociopathic Reduction Algorithm gave good results. It reduced the number of mis-

diagnoses on the training set from 15% to 5%, and the number of misdiagnoses on the

validation set from 30% to 20%.

The rule set refinement method described in this chapter, or its equivalent, is an

important component of any learning system for automatic creation of probabilistic rule

sets for automated reasoning systems. All such learning systems will confront the problem

of deleterious interactions among good rules, and the problem will require a global solution

method, such as has been described here.

CHAPTER 7

UPPER LIMITS OF LEARNING

The ideal upper limit of learning in an apprentice setting is when all deficiencies

in a knowledge base can be detected, and all detected deficiencies can be corrected. Since

an apprenticeship is not a panacea for human experts, it is desirable to quantify its limits

for an apprentice expert system.

A framework and procedure is presented in this chapter f,; calculating a perfor-

mance upper bound for any apprenticeship learning technique that detects knowledge base

deficiencies by modeling a human problem solver against a knowledge based system. This

procedure, called the synthetic agent method, systematically explores the space of near-

miss training instances because the learning apprentice observes a synthetic agent problem

solver that uses a knowledge base that is minimally different from the knowledge base of

the expert system. The synthetic agent method expresses the limits of debugging in terms

of the knowledge representation and control language constructs of the expert system,

namely the relation names of the EDB vocabulary.

The synthetic agent method involves the use of a synthetic agent: a copy of the

expert system that initially has the exact same knowledge as the expert system. This

chapter only presents an algorithm for evaluating an apprenticeship learning program

89

90

using the synthetic agent method; no experimental results are described.

It is worthwhile understanding the upper limit of apprenticeship learning to detect

missing or wrong knowledge. It would be good to understand if there are certain types

of errors that an apprenticeship is inherently unable to detect. This "limits of detection"

contrasts with the subject of the last chapter, which was on "limits of correction"; repair

techniques were shown to be appropriate for performance problems caused by missing or

wrong knowledge, but inherently limited on problems caused by certain types of knowledge

interactions.

We are especially interested in understanding the relative difficulty required in

learning tuples from the approximately 120 different EDB relations in HERACLES. How

successful can ODYSSEUS detect deficiencies caused by different relations? Is the absence

of tuple from certain relations always noticeable? Are there particular types of knowl-

edge whose absence is very hard to recognize? For example, HERACLES represents final

diagnoses in a hierarchical tree structure; determining that a misdiagnosis is caused by a

missing link in this structure, for example parent(fungal-meningitis coccidioides), may be

very difficult for the apprentice to discover. By contrast, it may be very easy to discover

whether a trigger property of a rule is missing. A trigger property causes the conclusion

of a rule to treated as an active hypothesis if particular clal'3es of the rule premise are

satisfied.

The performance upper limit calculated by the synthetic agent method identifies

missing or erroneous knowledge in an intelligent agent that a particular differential mod-

eling system is incapable of identifying. By contrast, most performance evaluation pro-

cedures aim to determine a performance lower bound; they experimentally demonstrate

that a particular differential modeling system can successfully identify some missing or

erroneous knowledge.

91

If ODYSSEUS fails to recognize the existence of a knowledge base deficiency this may

be to to inherent limitation of debugging via differential modeling or simply a shortcoming

of the ODYSSEUS component for detecting deficiencies. Note that deficiency detection is

the responsibility of the apprentice in the machine learning scenario and the expert in the

intelligent tutoring scenario.

This remainder of this chapter is organized as follows. Section 7.1 identifies impor-

tant performance evaluation issues related to evaluation of a learning program. Section

7.2 presents and discusses the synthetic agent method. Finally, Section 7.3 describes an

application of the synthetic agent method.

7.1 Evaluation and the Synthetic Agent Method

The synthetic agent method is considerably different from standard performance

evaluation methods in two fundamental ways. First, since a single knowledge base should

support multiple performance element's, evaluation criteria for a knowledge-based system

should be quality of the individual knowledge tuples, not the quality of a single perfor-

mance element. These metrics only partially overlap and certainly conflict in the short

term. Second, the proposed synthetic agent method is to delineate a performance upper

bound. A performance upper bound describes where and under what conditions a learn-

ing system for a problem solver must fail. By contrast, the standard evaluation approach

aims at showing the extent to which - '_arning system can succeed. Further, instead of

characterizing the limits of learning in terms of a percentage of problems that cannot be

solved, the synthetic agent method characterizes the performance upper bound in terms

of the knowledge representation language and the inference constructs used in the expert

system, namely, the the EDB relations.

Another method of validating a learning program is to have the learning program

92

watch a student solve a training problem set. Let us assume that the student exhibits

a representative set of the types of domain knowledge errors that could be made in the

problem domain. A domain expert can manually identify the domain knowledge errors

connected with each training problem. This manual analysis provides a performance

upper bound with respect to this training set for the learni -g program, and the learning

program is measured against this standard. When assuning that the student and the

problem set involve all possible types of domain knowledge errors to be made, the goals of

manual analysis and our proposed automated analysis using the synthetic agent method

are identical.

We desire to know those types of differences in an expert system knowledge base

t+ at cannot be detected or corrected via differelntial modeling. In contrast to the capability-

oriented approach, our validation approach aims at dete:inining when the differential

modeler must fail - we are limitation-oriented. For example, a limit of a program for

inducing LISP functions from examples might be that the program can't induce cases that

require certain types of loop constructs. In our work, we have focused on showing certain

conditions that force the differential modeling approach to fail under the most favorable

of conditions, the single fault assumption. The multiple fault assunption would allow

determination of a broader performance upper bound.

7.2 Synthetic Agent Method of Evaluation

The apprenticeship learning scenario involves a human problem solver and an expert

s) stem. The synthetic agent method consists of replacing tne person with a synthetic

agent, which is another expert system, in order to experiment with and evaluate the

apprenticeship learning system objectively. The knowledge in the synthetic agent expert

system is modified to be slightly different from the knowledge in the original expert system.

93

This situation is illustrated in Figure 7.1.

Problem Situation

i i
PS LP ES

Problem Learning Expert
Solver Program System

Differences Between
Problem Solving Knowledge Structures Problem Solving

Actions of PS and ES Actions

Figure 7.1: The synthetic agent for the learning by watching scenario.
The human problem solver (PS) is replaced by a copy of the expert
system (ES), and PS is observed by the learning program (LP). When a
tuple is deleted from ES and LP observes PS, it sees a synthetic expert.
When a tuple is deleted from PS and LP observes PS, it sees a synthetic
student.

Since the synthetic agent method involves two almost identical expert systems,

some terminological conventions will prove very helpful. The original HERACLES-based

expert system is referred to as ES. The copy of this expert system that replaces the

human problem solver is denoted as PS. Finally, the learning program being evaluated

will be referred to as LP. It always is watching the PS expert system.

An advantage of the synthetic agent method is control over interpersonal variables

involved in modeling a human problem solver against an expert system. An example of

an interpersonal variable is the problem-solving style of a PS, as exemplified by the set

of strategic diagnostic operators used by the PS. Diagnostic operators -pecify the perrmis-

sible task procedures that can he applied to a problem as well as the allowable methods

for achieving the task procedures. Examples of problem-solving operators in the domain

94

of diagnosis include: ask.general.questions, ask.clarifying.questions, refine.hypotheses, dif-

ferentiate.between.hypotheses,, and test.hypothesis. Another interpersonal variable is the

quantity of domain-specific knowledge that the PS possesses.

While control of interpersonal variables would lead to an incorrect LP performance

lower limit, conclusions reached concerning a performance upper limit are sound when

interpersonal variables are controlled. If a system is inherently limited under the most

optimal assumptions possible for modeling, it will be limited in the same way in all less

optimal settings.

Domain Knowledge Base

Referenced Knowledge

Observable Knowledge

Essential Knowledge

Figure 7.2: With respect to solving a particular problem, different part
of the knowledge base are more important than others in solving the
problem. This diagram shows the subset relationships between four im-
portant classes of knowledge.

In the learning and tutoring scenarios, the synthetic agent method treats the orig-

inal expert system knowledge base of ES as a 'gold standard'. The apprentice ES and the

student PS are engineered to have a deficiency with respect to this gold standard. In this

chapter we restrict our analysis to the situation where the apprentice's knowledge differs

from the gold standard by a single EDB tuple or all the tuples associated with a single rule;

hence we have a single fault assumption. Two types of knowledge base deficiencies are

95

possible: missing knowledge and erroneous knowledge. The synthetic agent method pro-

cedure described in Section 7.2.1 shows how deletion of knowledge can represent the space

of missing and erroneous knowledge. Other methods for creating erroneous knowledge are

described in section 7.2.2.

For a given problem case, we distinguish between referenced, observable, and es-

sential knowledge in the ES's knowledge base. The relation between these categories is

illustrated in Figure 7.2. Referenced knowledge refers to tuples that are accessed during

a problem solving case. Observable knowledge refers to tuples whose removal leads to dif-

ferent external observable behavior of a PS, either in the sequence of actions that the PS

exhibits or the final answer. Essential knowledge refers to tuples whose removal leads to a

significantly different final answer. Of most concern is the apprentice's ability to acquire

the essential knowledge connected with a problem case, since this is the only knowledge

that is critical to solving the case. For plausible reasoning systems, what comprises a

significantly different answer needs to be specified. For instance, if there are multiple

diagnoses, the significance of the order in which the hypotheses are ranked needs to be de-

termined. Acquisition of knowledge that is observable but not essential is also of interest,

since such knowledge can be essential for another problem case.

The procedure for calculating a performance upper limit for an apprenticeship

system is now presented.

7.2.1 The Synthetic Agent Method

Step 1. Create synthetic agent. Replace PS with a synthetic agent: a copy of ES with

initially the same object-level knowledge.1

For expository purposes, this PS is called a synthetic novice in an intelligent tutoring
scenario, a synthetic expert in a machine learning scenario, and a synthetic agent when any
scenario may be meant. And to minimize confusion, the original ES is called the original agent.

96

Step 2. Solve problem case. Solve a problem using PS and save the solution trace, i.e.,

the observable actions of PS and the final answer.

Step 3. Identify observable knowledge. Collect all EDB tuples that were referenced by PS

during the problem solving in Step 2. Identify the observable knowledge: the subset

of the referenced tuples whose removal would lead to a different solution trace or a

different final answer.

Step 4. For each observable tuple:

Step 4a. Remove the tuple from ES. In an knowledge acquisition scenario this cre-

ates an apprentice expert ES with missing knowledge. In an intelligent tutoring

scenario this creates a student PS with erroneous knowledge. The tuple removed

from the ES is declared to be erroneous 2 .

Step 4b. Detect and localize knowledge deficiency. Have the PS re-solve the case

mentioned in Step 2. See if LP can detect the deficiency and suggest and

evaluate the repair.

Step 5. For each observa',le tuple:

Step 5a. Remove the tuple from PS. In an intelligent tutoring scenario this creates

a synthetic student PS with missing knowledge. In a knowledge acquisition

scenario this creates an apprentice expert ES with erroneous knowledge. The

tuple removed from the PS is declared to be erroneous2 .

Step 5b. Detect and localize knowledge deficiency. Have the PS re-solve the case

mentioned in Step 2. See if LP can detect the deficiency and suggest and

evaluate a repair.

2 This tuple of knowledge is treated as erroneous for purposes of validation. In reality, the

tuple is true knowledge.

97

7.2.2 Discussion of Synthetic Agent Method

An expert system's explanation facility can be helpful in locating the observable

knowledge, for a given problem case. One of the hallmarks of a good expert system is

its ability to explain its own reasoning. So it is not too much to ask for those pieces of

knowledge used on a problem case, and a good explanation system might even be able

to identify the essential knowledge. At worst, given the pieces of knowledge that were

used to solve a particular problem, the essential pieces of knowledge can be determined by

experimentation. Usually, only a small amount of an expert system's domain knowledge is

observable with respect to a given problem; and our experiences in the medical diagnosis

domain have shown us that only a small amount of the observable knowledge is essential

knowledge.

Some knowledge that is referenced by the expert system may not have observable

consequences, even if it is used by the problem solver, since the a problem solver. For

instance, in MYCIN and NEOMYCIN, terms that removal of knowledge does not always

effect the external behavior of represent medical symptoms and measurements, such as

patient weight, have an ASKFIRST property. The expert system uses the value of this

property to decide whether the value of a variable is first determined by asking the user

or first determined by derivation by some other method, such as from first principles.

However, if the system does not possess techniques for deriving the information from

other principles, then the external behavior of the system is the same regardless of the

value of the ASKFIRST property.

To determine which relations are most easily learned, one would consider each EDB

relation separately and determine by analysis whether the relation is always observable,

only sometimes observable, or never observable. One would then find a problem case where

tuples from that relation are essential knowledge, or demonstrate that no such problem

98

case case exist. Then apply the synthetic agent procedure given above.

When testing the detection of knowledge base deficiencies in steps 4b and 5b of

the synthetic agent method, part of the assessment must relate to whether the appren-

tice detects knowledge base differences close to the point in the problem-solving session

where the different knowledge was used. This temporal proximity is important, since the

problem-solving context at this point in the problem-solving session strongly focuses the

search for missing or erroneous knowledge.

7.2.3 Categories of Errors

The knowledge organization that we focus upon specifies all object-level knowledge

in a declarative fashion. In such a knowledge base, there are two main categories of errors:

missing and erroneous knowledge. Missing knowledge is absent from the knowledge base,

and erroneous knowledge is factually incorrect knowledge that is present in the knowledge

base.

The space of missing knowledge is easy to generate, especially with the single fault

assumption. Recall that the original expert system serves as our gold standard and the

domain knowledge in the expert system is declaratively represented. Hence, the number

of single faults from missing knowledge is equal to the number of EDB tuples plus the

number of rules.

The space of erroneous knowledge is much more difficult to describe. The synthetic

agent method takes a novel approach to the problem in steps 5a and 6a. An erroneous

tuple is created by declaring a correct tuple to be erroneous for purposes of validation.

Erroneous knowledge can also be generated by substituting different but plausible terms

for the correct tiple.

99

7.3 Summary

With the proliferation of expert systems, methods of intelligent tutoring and ap-

prenticeship learning that are based on modeling the normal problem solving behavior of

a student or expert against a knowledge-intensive expert system should become increas-

ingly common. The synthetic agent method provides an objective means of .,sessing the

limits of a particular apprenticeship program in the context of intelligent tutoring and

apprenticeship learning. The power of an apprentice system is crucially dependent upon

the expert system's method of knowledge representation and control. The synthetic agent

method provides a means of expressing the limitations of a apprentice system in terms of

the knowledge representation and control vocabulary.

What prior knowledge is required to learn in an apprenticeship setting? What types

of knowledge are easy or difficult to learn? How well can ODYSSEUS follow the line of

reasoning of human experts and human novices? How does the performance of ODYSSEUS

compare to human apprenticeship learning performance? Clearly, an apprenticeship set-

ting is not a panacea for human experts and we would like to quantify its limits for an

apprentice learning program. The representation of knowledge in terms of EDB relations

provides a framework for posing and answering such questions.

The synthetic agent method involves using an expert system as the synthetic prob-

lem solver to be observed. The synthetic problem solver's knowledge base has one more

or one less piece of domain knowledge than the principal expert system, thereby creating

a synthetic expert or a synthetic novice, respectively. The objective of future planned

synthetic agent experiments is to determine whether the ODYSSEUS learning system can

detect and localize the spectrum of potential knowledge differences in an apprenticeship

learning setting. The synthetic agent method allows very controlled experiments to be

performed, and thereby permits the establishment of a performance upper bound. That

100

is, what cannot be learned when using a synthetic agent is inherently unlearnable in an

apprenticeship learning setting. We hope to express the inherent unlearnability results in

terms of the EDB relations; it would be insightful to understand which ones are easy or

difficult to learn. The synthetic agent method should place validation of an apprenticeship

learning system on a more principled scientific footing and lead to a general methodology

for evaluating apprentice learning systems in both a knowledge acquisition and student

modeling context.

CHAPTER 8

LOWER LIMITS OF LEARNING

So far, we have focused on the interesting issue of what apprentice learning, in

general, and our apprentice learning program, in particular, cannot accomplish, i.e., the

inherent and upper limits of learning. However, it is important to determine not just

what an apprenticeship cannot accomplish, but also what it can accomplish, and this is

the subject of this chapter.

The lower limit of learning is the minimal degree of improvement in a performance

element that is effected by a learning system. By its very nature, the lower limit is ex-

pressed with reference to a particular knowledge base and set of validation set of problems.

A lower limit can be established by demonstrating that a certain level of performance im-

provement is achieved. It can be represented as the percentage of improvement in the

performance element, on a scale from -1 to +1. The ultimate lower limit is when a learn-

ing program modifies a perfect performance element so that it is incapable of solving any

problem correctly, and this rates a -1. A lower limit of 0 is not dishonourable when the

initial performance element works perfectly. Almost all prior validation experiments on

learning programs for expert systems have concentrated on determination of a lower limit.

Performance evaluation of a learning program requires measuring the ability of a

101

102

performance element. The function of a learning program is to improve problem solving

performance, and so this performance must be evaluated both before and after the appren-

ticeship learning session. Evaluation of the performance element of an expert system is a

well-understood but difficult and time consuming task. Examples of performance evalua-

tion studies based on a sound methodology are the evaluations of the MYCIN, INTERNIST

and RL expert systems (Yu et al., 1979; Miller et al., 1984; Fu and Buchanan, 1985).

A typical way of measuring the degree to which a learning program improves a per-

formance element is to use disjoint validation and training problem sets. First, one records

the success rate of the problem solver at solving the validation problem set. Then the

learning program modifies the performance element while watching a human expert solve

a training problem set. Finally the performance element solves the validation problems

again; the amount of improvement in performance on the validation problems provides a

measure of the quality of the learning program.

This scenario establishes a lower bound on the quality of a learning program. By

increasing the size of the training problem set, the learning program might improve the

performance element even more. We refer to validation methods that establish a lower

bound on the quality of a learning program as capability-oriented. For a given set of

training and validation problems, capability-oriented validation shows that the learning

program is responsible for a more capable performance element.

In apprenticeship learning this amounts to determining how often the learning pro-

gram recognizes the situations in which the performance element's knowledge is deficient,

and determining how well it corrects these deficiencies. In intelligent tutoring, validation

of apprenticeship learning amounts to determining how often the learning program recog-

nizes when the student's knowledge is deficient and identifies the deficiency. We will now

present our experimental results in these two areas.

103

8.1 Knowledge Acquisition Results

Our knowledge acquisition experiments centered on improving the knowledge base

of the NEOMYCIN expert system for diagnosing neurology problems. The NEOMYCIN

vocabulary includes sixty diseases, but our physician John Sotos, determined that the

existing data request vocabulary only allowed diagnosis of ten of these diseases. Another

physician, Edward Herskovits, constructed a case library of 115 cases for these ten diseases

from actual patient cases from the Stanford Medical Hospital, to be used as for testing

ODYSSEUS. The validation set consisted of 112 of these cases. The most recent version of

NEOMYCIN, version 2.3, initially diagnosed 31.25% of these cases correctly.

For use as a training set, problem solving protocols were collected of John Sotos

solving six cases. The two longest protocol sessions were input to ODYSSEUS, to test

it's ability in a learning by watching apprenticeship setting. The input to ODYSSEUS for

each data request included the physician's focus for each data request, which provides

information on the physician's high-level goal.

ODYSSEUS learned 16 rules from watching these two cases. These rules were found

because they allowed metarule premises that contained evidence.for tuples to succeed,

thus completing a partial explanation of the expert's reasoning. Eight of these rules,

those with a positive certainty factor, were added to the NEOMYCIN knowledge base of

152 rules, along with two data requests that were judged as 'general questions'; these

are questions that should be asked of every patient. The negative rules were not added

because NEOMYCIN does not work properly if rules with a negative CF are used.

The set of 112 cases was rerun, and NEOMYCIN solved 43.75% of the cases correctly.

This represents over a 40% improvement in performance. John Sotos found all of the rules

to be plausible medical knowledge, except for one, that linked aphasia to brain abscess.

The performance of NEOMYCIN before and after learning is shown in Tables 8.1 and 8.2.

104

Disease Number True False False

Cases Positives Positives Nega-

tives

Brain Abscess 7 0 0 7

Bacterial Meningitis 16 16 47 0

Viral Meningitis 11 4 5 7

Fungal Meningitis 8 0 0 8

TB Meningitis 4 1 0 3

Cluster Headache 10 0 0 10

Tension Headache 9 9 20 0

Migraine Headache 10 1 1 9

Brain Tumor 16 0 0 16

Subarachnoid Hemorrhage 21 4 0 17

None 0 0 4 0

Totals 112 35 77 77

Table 8.1: Performance of NEOMYCIN before learning. There were 112 4.

cases used in the validation set to test NEOMYCIN's performance. A
misdiagnosis produces a false positive and a false negative.

The final results are shown in Table 8.3.

Compared to guessing by always selecting the disease that is a priori the most likely,

the performance of the NEOMYCIN expert system is 3.44 standard deviations better. On

105

Disease Number Trie False False

Cases Positives Positives Nega-

t; jes

Brain Abscess 7 1 2 6

Bacterial Meningitis 16 12 31 4

Viral Meningitis 11 4 5 7

Fungal Meningitis 8 0 1 8

TB Meningitis 4 1 0 3

Cluster Headache 10 6 0 4

Tension Headache 9 9 11 0

Migraine Headache 10 2 0 8

Brain Tumor 16 5 3 11

Subarachnoid Hemorrhage 21 9 1 12

None 0 0 9 0

Totals 112 49 63 63

Table 8.2: Performance of NEOMYCIN after apprenticeship learning.
This shows the results of NEOMYCIN after a learning by watching session
using ODYSSEUS that involved watching a physician solve two medical
cases.

a student-t test, this is significant at a t=.001 level of significance. Thus we can conclude

that NEOMYCIN's diagnostic performance is significantly better than guessing.

Compared to NEOMYCIN's baseline performance, the performance of NEOMYCIN

106

Problem Solving Method Correct

Diagnoses

Guessing randomly 10%

Guessing by always choosing most common disease 18%

NEOMYCIN before learning 31%

NEOMYCIN after learning: two cases watched 44%

Table 8.3: Performance improvement resulting from learning by watch-
ing. The first two entries show expected performance by guessing, with
and without knowing the distribution of diseases. The last two entries
show the performance of NEOMYCIN before and after the ODYSSEUS
learning program modifies its knowledge base as the result of watching
a physician diagnose two patients.

after improvement by ODYSSEUS is 2.86 standard deviations better. On a student-t test,

this is significant for t = .006. The improved NEOMYCIN will perform better than the

baseline NEOMYCIN in better than 99 out of 100 trials.

8.2 Student Modeling Results

Following the strategic reasoning of a student is a very difficult task. The student's

LORE in often not in the ODYSSEUS LORE set because the NEOMYCIN knowledge base

does is missing the domain knowledge necessary to make sense of the student's action.

When the specialist being observed is NEOMYCIN, its actual LORE is always in the LORE

set generated by ODYSSEUS for each data request. However, when observing second-year

medical students, their LORE is in the LORE set of ODYSSEUS only 25% of the time. This

107

incompleteness is mostly due to sparse domain knowledge. Indeed, experiments with the

MYCIN case library suggest that a four-fold expansion of the heuristic associational rules

in NEOMYCIN would allow the student's LORE to be in the LORE-set 75% of the time.

This was determined by analyzing data requests of students that are in the vocabulary of

MYCIN and NEOMYCIN, where the hypotheses being purued where in the vocabulary of

MYCIN and NEOMYCIN. The ODYSSEUS induction system expanded the original set of

MYCIN rules using induction over a library of MYCIN cases.

If determining a student's domain errors proves too difficult in a standard automatic

programming situation, we suggest a novel approach to finding a student's misconceptions.

The student will be requested to solve all 112 cases in the NEOMYCIN case library. Based

on these problem solving sessions, the ODYSSEUS induction system will synthesize heuris-

tic rules that correspond to the novice's beliefs. The synthesized rules can be compared

against those generated by having an expert solve all of the cases. Note that not only does

this allow finding a student's domain errors, but it provides a foundation for tracking the

novice's strategic reasoning, and thus provides a potential means of identifying strategy

errors. Because of the differences between the knowledge of a student and the knowledge

of an expert system, it may be impossible in principle for a NEOMYCIN-based student

modeling program to follow a student's strategic reasoning in the student protocols we

collected when given just the data-requests. However, synthesis of the student's domain

knowledge via the methods we have described reduce the number of domain differences

between the knowledge of the student and the expert system, and thereby allow more

focus on the discovery of strategy differences. Large differences in the domain knowledge

causes a cognitive tear in the model (Burton and Brown. 1982). A cognitive tear occurs

when a small amount of noise, introduced by the student's different knowledge, prevents

a modeler from finding a coherent explanation of observed actions.

108

8.3 Comparing Apprentice Scenarios

There is a contrast between the two different ODYSSEUS apprenticeship scenarios

of learning by watching and learning from experience. One way to compare these is to see

how the two scenarios accomplish the three major learning tasks faced by an apprenticeship

learning system: the realization that knowledge is missing, the generation of candidate

repairs, and the testing of those repairs. Note that the last of these three is identical

in both scenarios. On the other hand, detecting deficiencies is easier when watching

oneself, because there is none of the uncertainty connected with inferring another agent's

line of reasoning. Generating repairs is also easier when watching oneself, as there is no

uncertainty as to exactly which metarule clause and hence which relatioin is responsible

for the failure.

Compared to watching another problem solver, one can learn from watching one's

own problem solving earlier in the knowledge acquisition 'end-game'. When watching

another problem solver, a relatively large knowledge base is required; otherwise it is im-

possible to follow the line of reasoning of an expert most of the time, which is a requirement

of this scenario.

A disadvantage of watching oneself is a large number of false alarms. Metarules

fail most of the time, and it is not clear what the failure rate would be for a really good

knowledge base. Perhaps it would only be a little lower than with a fairly incomplete

knowledge base. More experimentation is required to answer these questions.

CHAPTER 9

CONCLUSIONS

The construction of expert system shells for generic tasks has become a common

practice. There is a growing awareness that the power of a knowledge acquisition system

for an expert system shell is bounded by the complexity and explicitness of the inference

procedure or strategy knowledge used by the shell (Eshelman and McDermott, 1986; Kahn

et al., 1985). There is also a growing awareness that automated knowledge acquisition must

be grounded in an underlying domain theory (Mitchell et al., 1985; Smith et al., 1985).

Using the HERACLES expert system shell and the ODYSSEUS apprenticeship learning

program, we have demonstrated how underlying theories of a problem solving domain can

be effectively used by a learning method centered around art explicit representation (e.g.,

tasks and metarules) of the problem solving method.

9.1 Contributions

9.1.1 Techniques for Apprenticeship Learning

The principal focus of this thesis has been apprenticeship learning techniques for

expert systems. For human problem solvers, an apprenticeship is the most effective

109

110

method known for refining and debugging expertise in knowledge-intensive domains such

as medicine and engineering; this motivates our research. An apprenticeship learning pro-

gram, called ODYSSEUS, has been implemented; it improves the knowledge base for an

expert system implemented with the HERACLES expert system shell.

Accomplishments include the development of a technique for learning by completing

explanations that allows object-level knowledge to be learned by relaxing the constraints

on the construction of an explanation. It has been demonstrated that the same technique

of learning by completing explanations can transfer expertise in both directions: to and

from a knowledge base.

This thesis demonstrated three scenarios for apprenticeship learning. The results

show that an apprenticeship setting strongly focuses the learning; it strongly biases the

learning process. In one experiment, a total of nine new rules and thirty new facts were

learned by watching each of the forty steps of problem solving contained in two examples.

These additions to the knowledge base improved the problem solving performance of an

expert system by 40% on a suite of 112 cases. Our physician rated over 80% of the new

knowledge as important and correct problem solving knowledge.

Two learning by watching scenarios were explored. The first involved having the

expert provide an explanation of the motivation behind each problem solving action. This

explanation was limited to the 'focus' each problem solving action. This goal information

made tractable the problem of identifying knowledge base gaps. The second technique

involved having the program determine the goal information. This latter method was

problematic, as there are often multiple reasonable goals, thus masking learning opportu-

nities.

We have developed a three stage model of end-game knowledge acquisition and

shown how existing research contributes to each of the three stages. These three stages

111

are the detecting deficiencies, suggesting repairs, and evaluating repairs.

Improvements to the representation of strategy control knowledge in NEOMYCIN

have been identified that are important for learning. These improvements relate to re-

versibility of the metarules, which is a key requirement of the ODYSSEUS approach. The

problem solving state is recorded on property lists of LISP atoms; not explicitly record-

ing all the variables that a metarule might change complicates reversibility. Finally, the

use of a recursive control stack hinders backing up a computation to an arbitrary point.

NEOMYCIN uses logic programming methods for implementation of knowledge represen-

tation but not for inference. These experiences suggest that logic programming would also

aid inference.

9.1.2 Fundamental Limits of Learning

Another major focus of this dissertation was on fundamental and inherent limita-

tions of learning techniques for knowledge-based export systems. This section summarizes

our results in this area.

Extant techniques of reasoning under uncertainty for expert systems are shown to

lead to a sociopathic knowledge base. A knowledge base is sociopathic if there exists a

subset of the knowledge base that gives better performance than the original knowledge

base. Incremental learning techniques are shown to be inherently limited to improve an

expert system with a sociopathic knowledge base.

The problem of minimizing sociopathicity was formalized as a bipartite graph min-

imization algorithm. This exact solution algorithm was proved to be NP-Complete. A

heuristic method for removing sociopathicity was developed called the Sociopathic Reduc-

tion Algorithm; experiments show excellent convergence properties.

The Synthetic Agent Method was developed to determine the upper performance

112

limits of learning by observation for a knowledge-based expert system. The method sys-

tematically explores the space of near-iniss training instances and expresses the results in

terms of the learnability of the different types of knowledge in the knowledge base.

9.1.3 Symmetry of Learning and Teaching

Using the same mechanisms, ODYSSEUS seni-automates the transfer of knowledge

into a knowledge base (learning) and out of a knowledge base (teaching). In the learning

scenario, ODYSSEUS observes an expert, and ftuctions as a knowledge acquisition program

for the HERACLES expert system shell. In the teaching scenario, ODYSSEUS observes a

student, and functions as a student modeling program for tlhe GUIDON2 intplligeint tutoring

system, which is built over HERACLES. ODYSSEUS has been demonstrated in the donain

of medical diagnosis, a task domain where apprenticeship l,>arning plays a crucial role in

the development of human experts.

The tectiques developed for knowledge acquisition are not as effective for intelli-

gent tutoring. The knowledge structures of an expert system more closely matci tho.e of

an expert than a student. Following the problem solving steps of a ;tuden: in terms of

the expert system knowledge structures is more difficult.

9.2 Main Limitations of Approach

ODYSSEUS was validated by collecting problem solving protocols of over a dozen

physicians and medical students, and feeding then to ODYSSEUS. The protocols were

annotated by the human problem solvers to allow LIS to determine how well ODYSSEUS

is able to follow the line of reasoning of human problem solvers, i.e., how well ODYSSEUS

functions as an automated protocol analysis tool.

First, we discovered that the processes of detecting discrepancies and suggesting

113

repairs are underconstrained. That is, ODYSSEUS finds multiple good explanations for

most actions of the expert and this is a problem since learning opportunities occur only

when no explanations are found. We reduced these multiple interpretations by using

information supplied by the human problem solver regarding the 'focus' for each data

request. However, ideally, an apprentice system should be able to learn without using

such information.

Second, for experts we have observed it appears that the NEOMYCIN knowledge

base is too impoverished to follow the line of reasoning of experts when given just their data

requests, and not focus information. That is, while NEOMYCIN is somewhat minimally

competent to solve problems, this domain knowledge may not allow a modeling program

to follow the line of reasoning of an expert. For each action of the expert, ODYSSEUS

generates a set of explanations. The expert's correct explanation is not in this set 75%

of the time. In most of these cases, analysis revealed that the reason is factual domain

knowledge that is missing from NEOMYCIN. It is unclear that any reasoning based on

'patterns of interpretation' can be of help when the knowledge is so different. However,

since the problem is missing domain knowledge, the solution to this problem might just

be to add more knowledge so that the learning system can bootstrap itself. As was

described in Section 8.2, some experiments with the MYCIN case library were performed

that revealed that if the knowledge base was increased by a factor of four, this placed us

at a bootstrapping threshold.

9.2.1 Underconstrained Interpretations of Actions

In this section, we describe the principal limitation of the ODYSSEUS approach to

learning by watching, as well as a solution approach that minght overcome this limitation.

The construction and testing of the ODYSSEUS program has revealed that the cen-

114

tral issue in detecting deficiencies in the knowledge base via apprenticeship learning is

constraining the multiple interpretations of the actions of human problem solvers. Re-

call that apprenticeship learning is a form of failure-driven learning. A knowledge base

discrepancy is suspected when no explanations can be construed for an observable action

of the human problem solver. The generality of the ODYSSEUS approach causes the set

of interpretations of problem solving actions and the set of conjectures of the underlying

knowledge base discrepancy to be underconstrained.

The purpose of the ODYSSEUS subsystem that detects deficiencies is to select one

or more LOREs as the expert's LORE or to decide that none of the LOREs provide an

adequate explanation of the expert's action. Deciding there is no adequate LORE is very

difficult, since there are often weakly plausible explanations for any action of the specialist;

yet to learn, the program must recognize when none of its LOREs are sufficiently plausible.

An approach for future research that we believe might successfully constrain these

multiple LOREs is as follows. The multiple LOREs should be shown to expert problem

solvers in order to extract the heuristics they use to discard unlikely interpretations. Then

an expert system should be created that uses these heuristics to prune the set of LOREs.

Note that this formalizes the task of selecting among multiple interpretations as a problem

that is solvable using the heuristic classification method; hence a HERACLES-based expert

system should be appropriate to solve the multiple interpretations problem. In formalizing

the detection of discrepancies as a classification problem, the pre-enumerated solution set

is the set of LOREs.

The tasks of detecting discrepancies and suggesting repairs for apprenticeship learn-

ing are knowledge intensive tasks. There are three reasons why these functions should be

for.,alated and implemented as HERACLES-based expert systems in their own right. First,

these tasks are knowledge-intensive (Dietterich and Buchanan, 1981), and expert system

115

techniques are useful for representing large amounts of knowledge. Second, w ,,. -n ex-

pert system architecture, the reasoning method used by the learning program can be made

explicit and easily evaluated, since the domain knowledge is declaratively encoded using

using HERACLES' EDB relations for encoding domain knowledge. Third, ODYSSEUS can

reason about any HERACLES-based system, then ODYSSEUS should be able to introspect

and reason about its own knowledge and knowledge structures, and could theoretically

improve itself in an apprenticeship learning setting. That is, it could debug and refine the

knowledge base of the expert system for for pruning multiple LOREsin an apprenticeship

learning setting.

A variety of knowledge sources (KSR) would provide information required by the

rules of the expert system for detecting deficiencies, thereby allowing it to rank LOREs.

The more important knowledge sources are a Heracles simulator KS, multiple interpre-

tations KS, user model KS, strategic distance KS, and a patterns of interpretation KS. A

description of each of these KSs follows.

The Heracles simulator KS would process the information obtained during the

problem solving session and this provides information on the current status of findings,

hypotheses, and rules. Examples of current status information is whether the parameters

and rules are known or unknown, true or false, and confirmed or disconfirmed. Rules for

aiding the detecting of deficiencies relate parameters and rules to individual LOREs. For

example, if the Heracles simulator KS believes that particular hypotheses have already

been confirmed or disconfirmed, then there is a rule that attaches negative evidence to all

LOREs that have as a goal or subgoal the confirmation one of these hypotheses.

The multiple interpretations KS would provide information that is used by rules for

ranking and rating LOREs. The rules encode heuristics used by medical domain experts

to arbitrate between multiple interpretations of a specialist's action. For instance, early

116

in the consultation session LOREs relating to more general hypotheses are preferred to

LOREs with more specific hypotheses.

The user model KS would record user characteristics such as individual diagnostic

style preferences, and these are used by rules for ranking LOREs. The rules arbitrate

between competing action justifications. For example, some problem solvers have a depth-

first problem-solving style, meaning that they pursue a particular hypothesis as soon as

there is weak evidence confirming it. A rule would add support to those LOREs consistent

with this style.

The strategic distance KS would provide information that aids in determining the

similarity between HIERACLES' preferred strategic action and the strategic action associ-

ated with each LORE. We assume that HERACLES' strategic knowledge exemplifies good

strategic reasoning. Therefore, if the strategic action associated with a LORE is close to

HERACLES' preferred strategic action, it is favored.

Finally, the patterns of interpretation KS would provide information that is used

by rules that rank LOREs. The rules rate competing justifications according to the overall

coherence they lend to the specialist's strategic plan.

If the expert system for detecting deficiencies is uncertain about an important fact,

such as the expert's focus on a previous question in the consultation, the expert system call

query the user, but this violates our goal of trying to automate the knowledge acquisition

process as much as possible.

9.3 Further Work

Future research will continue in the area of apprenticeship learning. The method

of detecting discrepancies must be improved: presently interpretations of expert behavior

are underconstrained, and this slows down the rate at which learning proceeds.

117

There are many validation experiments yet to be performed. We would like to know

the relative efficacy of the three apprenticeship learning scenarios.

Also, ODYSSEUS' techniques hold promise to tackle successfully important unsolved

problems in the area of automatic programming from examples.

APPENDICES

118

119

APPENDIX A

ODYSSEUS PROGRAM

The ODYSSEUS system is implemented in Interlisp-D on a Xerox Dorado in

the Knowledge Systems Lab of the Computer Science Department at Stanford University,

and the Intelligent Systems Lab at Xerox Parc. This section describes the subsystems of

ODYSSEUS that are implemented.

Induction System (49 functions)

Given as set of solved cases and a list of diagnostic hypotheses, Odys-kb-induce

(ODYSSEUS knowledge base induce) cleates a rule base for the HERACLES expert system

shell. The program contains default induction biases that are easily modifiable. The

program is being extended to provide the following capability: given a set of solved cases

and a potential rule, determine the goodness of this rule in terms of induction biases and

predictive accuracy.

Explanation Generator and Recognizer (104 functions)

Given a specialist solving a problem, Odys-diff-model (ODYSSEUS differential mod-

eler) generates and ranks action justifications for each observed problem solving action of

the specialist.

120

Display System (59 functions)

The display subsystem provides a graphics interface that allows a specialist to solve

problems and justify actions using menus and a D-machine mouse.

Knowledge Base Refinement System (15 functions)

Given a rule set generated by Odys-kb-induce, this program finds a subset of the

rules that has a global minimum weighted error. This program produces a solution in

12-25 iterations of the rule base.

121

APPENDIX B

HERACLES PROGRAM

The major domain knowledge base for HERACLES at this time is the NEOMYCIN

knowledge base for diagnosing meningitis and neurological problems (Clancey, 1984). A

second effort in the sand casting domain is called CASTER (Thompson and Clancey, 1986).

EDB tuples fall into five major classes, and the tuples for each class are listed in

(Clancey and Bock, 1986). These classes are as follows.

" Static relations pertaining to constants and variables

" Static relations pertaining to rules

* Dynamic relations pertaining to beliefs

" Dynamic relations pertains to search and focus relations

* Dynamic relations with changing values

The irst two classes encompass domain-specific knowledge. To learn a tuple in

this class requires having a confirmation theory for this class. The relations that require

a confirmation theory are as follows.

122

Domain Relations Pertaining to Findings and Hypotheses

(SOFT-DATA $FIN DING)
(HARD-DATA $FIN DING)
(NONSPECIFIC $FINDING)
(REDFLAG $FINDING)
(STATE-CATEGORY $H-YP)
(TAXONOMIC SHYP)
(PARENTOF STAXPARM $PARENT)
(COMPLEX $TAXPARM)

(CAUSES SHYP1 SHYP2)
(SUBSUMES $FINDING1 $FINDING2)
(PROCESSQ $FINDINGI SFINDING2)
(CLARIFYQ $FINDING1 $FINDING2)
(SOURCE $FINDING1 $FINDING2)
(SCREENS $FINDING1 $FINDING2)
(PROCESS-FEATURES SHYP $SLOT $VAL $FINDING)

(ALWAYS-SPECIFY $FIN DING)
(ASKFIRST $FINDING)
(PROMPT $FINDING $VAL)

(BOOLEAN $PARM)
(MULTIVALUED SPARM)
(TABLE $BLOCKPARM $FINDING)

(ENABLINGQ SHYP $FINDING)
(SUGGESTS SPARM SHYP)
(TRIGGERS SPARM SHYP)

Domain Relations Pertaining to Rules

(ANTECEDENT-IN $FINDING $RULE)
(APPLICABLE? $RULE SCNTXT $FLG)
(EVIDENCEFOR? SPARM SHYP $RULE SCF)
(COMMONCASERULES SHYP $RULE)
(UNUSUALCASERULES SHYP $RULE)

(PREMISE $RULE $VAL)
(ACTION $RULE $VAL)
(ANTECEDENT $RULE)
(TRIGGER $RULE)
(SCREEN $RULE)

123

APPENDIX C

CALCULATING 4)

CFConsider rules of the form E - H. Then CF = 4 = 4(ZIZ2,Z3) = empirical

predictive power of rule R, where:

" X1 = P(E+IH+) = fraction of the positive instances in which R correctly succeeds

(true positives or true negatives)

" X2 = P(E+ IH-) = fraction of the negative instances in which R incorrectly succeeds

false positives or negatives

" X3 = P(H+) = fraction of all instances that are positive instances

Given z 1 ,X 2 ,z 3 , let

X4 = P(H+IE+) X -12

zXI3+ 21-X3" "

If X4 > X3 then (t else P

This probabilistic interpretation reflects the modifications to the certainly factor

model proposed by (Heck':rman, 1986).

124

APPENDIX D

GLOSSARY

DENDRAL (72) -- MYCIN (74) - - EMYCIN (79) GUIDON (79)

ME TA-
DENDRAL (78) TEIRESIAS (76)

MRS (81) -. NEOMYCIN (81) - HERACLES (86) GUIDON2 (86)

ODYSSEUS (87) ODYSSEUS (87)

Figure D.1: Genealogy of the ODYSSEUS apprenticeship learning pro-
gram. Only partial dependency links are shown. All chronologically
earlier programs heavily influenced the design of all latter programs.

DENDRAL. An expert system for chemical structure determination (Buchanan and

Feigenbaum, 1978; Lindsay et al., 1980).

125

EMYCIN. An expert system shell for classification-type problems consisting of the domain-

independent part of MYCIN (VanMelle, 1980)

GUIDON. A case method tutor for transferring the expertise of a an EMYCIN knowledge

base to a student (Clancey, 1979).

GUIDON2. An intelligent tutoring system for transferring the expertise of a HERACLES

knowledge base to a student (Clancey, 1986).

HERACLES. An expert system shell for solving problems using the heuristic classification

method, consisting of the domain-independent part of NEOMYCIN (Clancey, 1986).

META-DENDRAL. A knowledge acquisition program for the DENDRAL expert system

(Buchanan and Feigenbaum, 1978; Lindsay et al., 1980).

MYCIN. An expert system for diagnosing meningitis and bacterenia infections (Shortliffe,

1976; Buchanan and Shortliffe, 1984).

MRS. A logic programming language, similar to PROLOG, augmented with meta-level

control (Russell, 1985).

NEOMYCIN. A reworking of the MYCIN expert system. Strategy knowledge is explicitly

represented as tasks and metarules. NEOMYCIN's domain is meningitis and diseases easily

confused with meningitis (Clancey, 1984).

ODYSSEUS. A knowledge acquisition program for a HERACLES-based expert system,

and a student modeling program for the GUIDON2 intelligent tutoring system (Wilkins

et al., 1986; Wilkins, 1986).

126

TEIRESIAS. A knowledge acquisition program for an EMYCIN-based expert system

(Davis, 1982).

BIBLIOGRAPHY

127

12S

BIBLIOGRAPHY

Amarel, S. (1986). Program synthesis as a theory formation task: problem representations

and solution methods. In Michalski, R. S., Carbonell, J. G., and Mitchell, T. M.,
editors, Machine Learning, Volume II, chapter 18, pages 499-570, Los Altos: Morgan

Kaufmann.

Anderson, J. (1983). Acquisition of proof skills in geometry. In Michalski, R. S., Car-
bonell, J. G., and Mitchell, T. M., editors, Machine Learning: An artificial intelligence

approach, chapter 7, pages 191-220, Palo Alto: Tioga Press.

Barstow, D. R. (1979). Knowledge-Based Program Construction. New York: Elsevier-
North Holland

Biermann, A. W. (1978). The inference of regular LISP programs from examples. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-8(8):585-600.

Brown, J. S., Burton, R., and DeKleer, J. (1982). Pedagogical and knowledge engineering
techniques in SOPHIE I, II and III. In Sleeman, D. H. and Brown, J. S., editors,
Intelligent Tutoring Systems, pages 227-282, London: Academic Press.

Brown, J. S. and Burton, R. B. (1978). Diagnostic models for procedural bugs in basic
mathematical skills. Cognitive Science, 2:155-192.

Brown, J. S. and VanLehn, K. (1980). Repair theory: a generative theory of bugs in
procedural skills. Cognitive Science, 4:479-426.

Buchanan, B. G. and Feigenbaum, E. A. (1978). Dendral and Meta-Dendral: their appli-
cation dimensions. Artificial Intelligence, 11:5-24.

Buchanan, B. G. and Mitchell, T. M. (1978). Model-directed learning of production
rules. In Waterman, D. A., , and Hayes-Roth, F., editors, Pattern-Directed Inference
Systems, pages 297-312, New York: Academic Press.

Buchanan, B. G., Mitchell, T. M., Smith, R. G., and Johnson, C. R. (1978). Models
of learning systems. In Belzer, J., editor, Encyclopedia of Computer Science and

Technology, chapter 11, New York: Marcel Dekker. Also Stanford Report STAN-CS-
79-692.

Buchanan, B. G. and Shortliffe, E. H. (1984). Rule-Based Ezpert Systems: The MYCIN Ez-

periments of the Stanford Heuristic Programming Project. Reading, Mass.: Addison
Wesley.

129

Burks, A. W. (1977). Cause, Chance, Reason: An Inquiry 17to the Nature of Scientific

Evidence. Chicago: University of Chicago Press.

Burton, R. and Brown, J. S. (1982). An investigation of computer coaching for informal

learning activities. In Sleeman, D. H. and Brown, J. S., editors, Intelligent Tutoring
Systems, pages 79-98, London: Academic Press.

Charniak, E. (1977). Ms. Malaprop, a lafiguagc comprehension system. In Proceedings of
the 1977 IJCAL pages 1-7, Cambridge, MA.

('lancey, W. J. (1979). Transfer of Rule-Based Expertise Through a Tutorial Dialogue.

PhD thesis, Stanford University. Stanford Technical Report STAN-CS-79-769.

Clancey, W. J. (1984). NEOMYCIN: reconfiguring a rule-based system with application
to teaching. In Clancey, W. J. and Shortliffe, E. H., editors, Readings in Medical

Artificial Intelligence, chapter 15, pages 361-381, Reading, Mass.: Addison-Wesley.

Clancey, W. J. (1985). Heuristic classification. Artificial Intelligence, 27:289-350.

Clancey, W. J. (1986). From GUIDON to NEOMYCIN to HERACLES in twenty short

lessons. AI Magazine, 7:40-60.

Clancey, W. J. (1987). The knowledge engineer as student: metacognitive bases for asking
good questions. In Lesgold, A. and Mandl, H., editors, Learning Issues for Intelligent
Tutoring Systems, Springer Verlag. In press.

Clancey, IN. J. and Bock, C. (1986). Representing control knowledge as abstract tasks and
metarules. In Coombs, M. and BoIc, L., editors, Computer Expert Systems, Springer
Verlag. Also, Knowledge Systems Lab Report KSL-85-16, Stanford University, April

1985.

Collins, A., Brown, J. S., and Newman, S. E. (1987). Cognitive apprenticeship: teaching
the craft of reading, writing and mathematics. In Resnick, L. B., editor, Cognition
and Instruction: Issues and Agendas, Lawrence Erlbaum Associates. In press.

Davis, R. (1982). Application of meta level knowledge in the constructica, maintenance
and use of large knowledge bases. In Davis, R. and Lenat, D. B., editors, Knowledge-
Based Systems in Artificial Intelligence, pages 229-490, New York: McGraw-Hill.

Davis, R. (1984). Diagnostic reasoning based on structure and behavior. Artificial Intel-

ligence, 24(1-3):347-410.

DeJong, G. (1986) An approach to learning from observation. In Michalski, R. S., Car-
bonell, J. G., and Mitchell, T. M., editors, Machine Learning, Volume II, chapter 19,
pages 571-590, Los Altos: Morgan Kaufmann.

DeJong, G. and Mooney, R. (1986). Explanation-based learning: an alternative view.

Machine Learning, 1(2):145-177.

DeKleer, J. (1986). An assumption-based TMS. Artificial Intelligence, 28(2):127-162.

DeKleer, J. and Brown, J. S. (1984). A qualitative physics based on confluences. Artificial
Intelligence, 24(1-3):7-84.

130

DeKleer, J. and Williams, B. C. (1987). Diagnosing multiple faults. Artificial Intelligence,
32(1).

Dietterich, T. G. (1984). Constraint Propagation Techniques for Theory-Driven Data
Interpretations. PhD thesis, Stanford University, Stanford. CA. Stanford Technical
Report STAN-CS-84-1030.

Dietterich, T. G. and Buchanan, B. G. (1981). The Role of the Critic in Learning Systems.
Heuristic Programming Project Report HPP-81-19, Stanford University, Stanford,
CA. Reprinted in Selfridge, 0., Rissland, E. and Arbib, M., eds., Adaptive control of

Ill-defined systems.

Dyer, M. G. (1973). In-Depth Understanding. Cambridge: MIT Press.

Eshelman, L. and McDermott, J. (1986). MOLE: a knowledge acquisition tool that uses
its head. in Proceedings of the 1986 National Conference on Artificial Intelligence,
Philadelphia, PA.

Fu, L. and Buchanan, B. G. (1985). Inductive knowledge acquisition for rule based expert
systems. Knowledge Systems Laboratory Report KSL-85-42, Stanford University,
Stanford, CA.

Genesereth, M. R. (1978). Automated Consultation for Complez Computer Systems. PhD
thesis, Harvard University.

Genesereth, M. R. (1981). The role of plans in intelligent teaching systems. In Sleeman,

D. H. and Brown, J. S., editors, Intelligent Tutoring Systems, pages 137-157, London:
Academic Press.

Genesereth, M. R. (1982). Diagnosis using hierarchical design models. In Proceedings of
the 1982 National Conference on Artificial Intelligence, pages 278-283, Pittsburgh,

PA.

Genesereth, M. R. (1984). The use of design descriptions in automated diagnosis. Artificial

Intelligence, 24(1-3):411-436.

Ginsberg, A. (1986). A metalinguistic approach to the construction of knowledge base
refinement systems. In Proceedings of the 1986 National Conference on Artificial

Intelligence, pages 436-441, Philadelphia, PA.

Ginsberg, A., Weiss, S., and Politakis, P. (1985). SEEK2: a generalized approach to
automatic knowledge base refinement. In Proceedings of the 1985 IJCAI, pages 367-

374, Los Angeles, CA.

Goldstein, 1. (1978). Developing a Computational Representation for Problem Solving
Skills. Artificial Intelligence Laboratory Memo 495, MIT, Cambridge, MA.

Gordon, J. and Shortliffe, E. H. (1985). A method for managing evidential reasoning in a
hierarchical hypothesis space. Artificial Intelligence, 26(3):323-358.

Hayes-Roth, F., Klahr, P., and Mostow, D. J. (1980). Knowledge acquisition, knowledge
programming, and knowledge refinement. Technical Report R-2540-NSF, The Rand
Corporation, Santa Monica, CA.

131

Heckerman, D. (1986). Probabilistic interpretations for Mycin's certainty factors. In
Kanal, L. and Lemnar, J., editors, Uncertainty in Artificial Intelligence, pages 167-
196, New York: North Holland.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: Univer-
sity of Michigan Press.

Holland, J. H. (1986). Escaping brittleness: the possibilities of general-purpose learning al-
gorithms applied to parallel rule-based systems. In Michalski, R. S., Carbonell, J. G.,

and Mitchell, T. M., editors, Machine Learning, Volume II, chapter 20, pages 593-
624, Los Altos: Morgan Kaufmann.

Johnson, W. L. and Soloway, E. (1985). PROUST: knowledge-based program understand-
ing. IEEE Trans. Software Engineering, SE-11(3):267-274.

Kahn, G., Nowlan, S., and McDermott, J. (1985). MORE: an intelligent knowledge acqui-

sition tool. In Proceedings of the 1985 IJCAI, pages 573-580, Los Angeles, CA.

Korf, R. (1985). Learning to Solve Problems by Searching for Macro-Operators. Marsh-
field, Mass: Pitman.

Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987). SOAR: an architecture for general
intelligence. Artificial Intelligence, 33(1):1-64.

Laird, J. E., Rosenbloom, P. S., and Newell, A. (1984). Towards chunking as a general
learning mechanism. In Proceedings of the 1984 National Conference on Artificial
Intelligence, Austin, TX.

Langley, P. W., OhIsson, S., and Sage, S. (1984). A Machine Learning Approach to
Student Modeling. Technical Report RI-TR-84-7, Robotics Institute, Carnegie-Mellon

University, Pittsburgh, PA.

Lenat, D. B. (1976). AM: An Artificial Intclligence Approach to Discovery in Mathematics
as Heuristic Search. PhD thesis, Stanford University.

Levesque, H. J. (1984). Foundations of a functional approach to knowledge representation.
Artificial Intelligence, 23(2):155-212.

Lindsay, R., Buchanan, B. G., A., F. E., and Lederberg, J. (1980). Applications of
Artificial Intelligence for Organic Chemistry: The DENDRAL Project. New York:
McGraw-Hill.

London, B. and Clancey, W. J. (1982). Plan recognition strategies in student model-
ing: prediction and description. In Proceedings of the 1982 National Conference on

Artificial Intelligence, pages 335-338, Pittsburgh, PA.

Manna, Z. and Waldinger, R. (1977). Studies in Automatic Programming Logic. New

York: North-Holland.

Manna, Z. and Waldinger, R. J. (1975). Knowledge and reasoning in program synthesis.
Artificial Intelligence, 6(2).

132

Michalski, R. S. (1983). A theory and methodology of inductive inference. In Michalski,
R. S., Carbonell, J. G., and Mitchell, T. M., editors, Machine Learning: An Artificial
Intelligence Approach, chapter 4, pages 83-134, Palo Alto: Tioga Press.

Michalski, R. S., Carbonell, J. G., and Mitchell, T. M., editors (1983). Machine Learning:
An Artificial Intelligence Approach. Palo Alto: Tioga Press.

Michalski, R. S., Carbonell, J. G., and Mitchell, T. M., editors (1986). Machine Learning:
An Artificial Intelligence Approach. Volume II, Los Altos: Morgan Kaufmann.

Michalski, R. S. and Chilausky, R. L. (1980). Knowledge acquisition by encoding expert
rules versus computer by induction from examples: a case study involving soybean
pathology. Int. J. of Man-Machine Studies, 12(1):63-87.

Miller, R. A., Pople, H. E., and Myers, J. D. (1984). INTERNIST-i: an experimental
computer-based diagnostic consultant for general internal medicine. In Clancey, W. J.
and Shortliffe, E. H., editors, Readings in Medical Artificial Intelligence, chapter 8,

pages 190-209, Reading, Mass.: Addison-Wesley.

Minton, S. (1985). Selectively generalizing plans for problem solving. In Proceedings of
the 1985 IJCAI, pages 596-599, Los Angeles, CA.

Mitchell, T. (1983). Learning and problem solving strategies. In Proceedings of the 1983
IJCAI, pages 1139-1151, Karlsruhe, West Germany.

Mitchell, T., Utgoff, P. E., and Banerji, R. S. (1983). Learning by experimentation:
acquiring and refining problem-solving heuristics. In Michalski, T. M., Carbonell,
J. G., and Mitchell, T. M., editors, Machine Learning: An Artificial Intelligence

Approach, pages 163-190, Palo Alto: Tioga Press.

Mitchell, T. M., Carbonell, J. G., and Michalski, R. S., editors (1986). Machine Learning:
A Guide to Current Research. Boston: Kluwer Academic Publishers.

Mitchell, T. M., Mahadevan, S., and Stembeig. L. I. (1985). LEAP: a learning apprentice
for VLSI design. In Proceedings of the 1985 IJCAI, pages 573-580, Los Angeles, CA.

Newell, A. and Simon, H. A. (1972). Human Problem Solving. Engelwood Cliffs: Prentice-
Hall.

Ohlsson, S. and Langley, P. (1985). Identifying Solution Paths in Cognitive Diagnosis.
Technical Report CMU-RI-TR-85-2, Carnegie-Mellon University, Pittsburgh, PA.

Patil, R., Szolovits, R., and Schwartz, W. (1981). Causal understanding of patient illness
in medical diagnosis. In Proceedings of the 1981 IJCAI, pages 893-899, VanCouver,
Canada.

Patil, R. S., Szolovits, P., and Schwartz, W. B. (1982). Information acquisition in di-
agnosis. In Proceedings of the 1982 National Conference on Artificial Intelligence,
pages 345-348, Pittsburgh, PA.

Politakis, P. and Weiss, S. M. (1984). Using empirical analysis to refine expert system
knowledge bases. Artificial Intelligence, 22(1):23-48.

133

Quinlan, J. R. (1983). Learning efficient classification procedures and their application to
chess end games. In Michalski, R. S., Carbonell, J. G., and Mitchell, T. M., editors,
Machine Learning, chapter 15, pages 463-482, Palo Alto: Tioga Press.

Rich, C., Shrobe, H. E., and Waters, R. C. (1979). Overview of the programmer's appren-
tice. In Proceedings of the 1979 IJCAI, pages 827-828, Tokyo, Japan.

Russell, S. (1985). The Compleat Guide to MRS. Knowledge Systems Laboratory Re-
port KSL-85-108, Stanford University, Stanford, CA.

Russell, S. (1986). Inductive and Analogical Reasoning. PhD thesis, Stanford University,

Stanford, CA.

Sacerdoti, E. (1977). A Structure for Plans and Behavior. New York: American Elsevier.

Samuel, A. L. (1963). Some studies in machine learning using the game of checkers.
In Feigenbaum, E. and Feldman, D., editors, Computers and Thought, New York:
McGraw-Hill.

Schank, R. C. (1982). Dynamic Memory. Cambridge: Cambridge University Press.

Schmidt, C. F., Sridharan, N. S., and Goodson, J. L. (1978). The plan recognition problem:
an intersection of psychology and AL. Artificial Intelligence, 11(1-2):45-83.

Segre, A. M. (1979). Ezplanation-based learning of generalized robot assembly plans. PhD
thesis, Univ. of Illinois, Urbana-Champaign.

Shafer, G. A. (1976). Mathematical Theory of Evidence. Princeton: Princeton University
Press.

Shapiro, E. H. (1983a). Algorithmic Program Understanding. Cambridge: MIT Press.

Shapiro, E. Y. (1983b). Logic programs with uncertainties: a tool for implementing rule-
based systems. In Proceedings of the 1983 IJCAI, pages 529-532, Karlsruhe, West
Germany.

Shaw, D., Swartout, W. R., and Green, C. (1975). Inferring LISP programs from examples.
In Proceedings of the 1975 IJCAI, Tbilisi, Georgia, USSR.

Shortliffe, E. H. (1976). Computer-based Medical Consultations: MYCIN. New York:

American Elsevier.

Shrobe, I. E. (1979). Reasoning and Logic for Complez Program Understanding. PhD
thesis, MIT, Cambridge, MA.

Silver, B. (1986). Meta-Level Inference. New York: North Holland.

Sleeman, D. H. and Brown. J. S., editors (1981). Intelligent Tutoring Systems. London:
Academic Press.

Smith, R. G., Winston, H. A., Mitchell, T. M., and Buchanan, B. G. (1985). Representa-
tion and use of explicit justifications for knowledge base refinement. In Proceedings
of the 1985 IJCAI, pages 673-680, Los Angeles, CA.

134

Summers, P. (1977). A methodology for LISP program construction from examples. Jour'-
nal of the A CM, 24.

Sussman, G. J. (1976). A Computational Model of Skill Acquisition. New York: Springer-
Verl ag.

Swartout, W. R. (1983). XPLAIN: a system for creating and explaining expert consulting
programs. Artificial Intelligence, 21(3):285-325.

Thompson, T. and Clancey, W. J. (1986). A qualitative modeling shell for process diag-

nosis. IEEE Software, 3(2):6-15.

Utgoff, P. E. (1986). Machine Learning of Inductive Bias. Boston: Kluwer Academic
Publishers.

VanLehn, K. (1983). Felicity Conditions for Human Skill Acquisition: Validating an AI-
based Theory. PhD thesis, MIT. Also, Technical Report CIS-21, Xerox PARC, Palo

Alto, 1983.

VanMelle, W. (1980). A Domain-Independent System that Aids in Constructing

Knowledge-Based Consultation Programs. Heuristic Programming Project Re-
port HPP-80-22, Stanford University, Stanford, CA.

Waterman, D. (1970). Generalization learning techniques for automating the learning of

heuristics. Artificial Intelligence, 1:121-170.

Waterman, D. (1978). Exemplary programming in RITA. In Waterman, D. A. and Hayes-

Roth, F., editors, Pattern-Directed Inference Systems, New York: Academic Press.

Wilkins, D. C. (1986). Knowledge base debugging using apprenticeship learning
techniques. In Knowledge Acquisition for Knowledge-Based Systems Workshop,

pages 40.0-40.14, Banff, Canada.

Wilkins, D. C. (1987). Cognitive diagnosis of heuristic classification problem solving.
In Third International Conference on Artificial Intelligence and Education, page 57,
Pittsburgh, PA.

Wilkins, D. C. and Buchanan, B. G. (1986). On debugging rule sets when reasoning under

uncertainty. In Proceedings of the 1986 National Conference on Artificial Intelligence,
pages 448-454, Philadelphia, PA.

Wilkins, D. C., Clancey, W. J., and Buchanan, B. G. (1986). An overview of the

ODYSSEUS learning apprentice. In Mitchell, T. M., Michalski, R. S., and Carbonell,
J. G., editors, Machine Learning: A Guide to Current Research, pages 332-340,
Boston: Kluwer Academic Publishers.

Wilkins, D. C., Clancey, W. J., and Buchanan, B. G. (1987a). Using and evaluating
differential modeling in intelligent tutoring and apprentice learning system. In Psotka,
J. and Massey, D., editors, Intelligent Tutoring Systems: Lessons Learned, Hillsdale:
Lawrence Erlbaum Associates. In press. Also Stanford Technical Report STAN-CSD-
87-1175, Stanford University, Stanford, CA.

135

Wilkins, D. C., Clancey, W. J., and Buchanan, B. G. (1987b). Knowledge base refinement
by monitoring abstract control knowledge. In Boose, J. and Gaines, B., editors,
Knowledge Acquisition for Knowledge Based Systems, Academic Press. In press. Also
Stanford Technical Report STAN-CSD-87-1182, Stanford University, Stanford, CA.

Yu. V. L, Fagan, L. M., Wraith, S. M., and Clancey, W. J. (1979). Evaluating the
performance of a computer-based consultant. J. Amer. Med. Assoc., 242(12):1279-

1282.

Zadeh, L. A. (1979). Approximate reasoning based on fuzzy logic. In Proceedings of the
1979 IJCAI, pages 1004-1010, Tokyo, Japan.

INDEX

136

137

INDEX

"$ symbol, 19 performance element, 6

action, 7 performance model of learning, 6

bipartite graph minimization performance standard, 32

formulation, 80 poison rule, 83

data request, 7 program, AM, 37

detecting deficiencies, 32 program, ARMS, 35

EBG or explanation based program, DENDRAL, 33,124

generalization, 25 program, EMYCIN, 125

EBL or explanation based learning"/, 25 program, GENESIS, 34

EDB or extensional data base , 16 program, GUIDON-DEBUG, 28

essential knowledge, 95 program, GUIDON2, 125

evaluating repairs, 55 program, GUIDON, 125

false negative, 74 program, HACKER, 35

false positive, 74 program, HERACLES, 5,15,121,125

genetic algorithm, 35 program, ID3, 22

global credit assignment, 7 program, IMAGE, 29

goal, 38 program, INDUCE, 22

heuristic classification, 15 program, LEAP, 23

IDB or intensional data base, 18 program, LEX, 36

inherent limits of learning, 70 program, META-DENDRAL, 33,124

intelligent editor, 8 program, MORE, 23

learning by watching a student, 4 program, MRS , 17

learning by watching an expert system, 4 program, MYCIN, 125

learning by watching an expert, 3 program, NEOMYCIN, 5,125

learning by watching, 4 program, ODYSSEUS, 119,125

learning critic, 7 program, SEEK2, 22

learning from experience, 4 program, SIERRA, 47

local credit assignment, 7 prograan, SOAR, 36

LORE or line of reasoning program, TEIRESIAS, 22,126

explanation, 38 referenced knowledge, 95

lower limits of learning, 101 relation instances, 17

metarule, 20 relation schema, 16

observable knowledge, 95 relations, 16

138

sociopathic knowledge base, 71

sociopathic reduction algorithm, 82

suggesting repairs, 45

synthetic agent method, 95

synthetic agent, 89

synthetic expert, 95

synthetic novice, 95

task interpreter, 20

task, 20

training instances, 7,73

true negative, 74

true positive, 74

tuple, 17

upper limits of learning, 89

